高斯分布期望和方差的最小二乘法拟合

这篇博客分享了一个用MATLAB编写的GaussFitting函数,该函数采用最小二乘法来拟合高斯分布的期望u和方差sigma。作者提到在实际应用中,该函数测试效果良好。通过剔除y=0的数据点,将高斯函数转换为二次多项式并进行最小二乘拟合,最终计算出期望和方差的值。
摘要由CSDN通过智能技术生成

 最近拟合高斯分布的期望和方差,我写了个使用最小二乘法拟合的函数,经过测试效果还不错。现在公布源码吧,希望能给需要的朋友一些参考。

 

function[u,sigma] = GaussFitting(x,y)

%====================================================================

% date: 2011/03/26

% created by  hfeng

%参数x,y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值