机器学习之线性回归 损失函数、代价函数、目标函数

损失函数(Loss Function)定义在单个样本上,算的是一个样本的误差。比如:

 

loss(\theta)=(\hat{y_i} - y_i) 其中 \hat{y_i}=h_{\theta}(x_i)

 

0-1损失函数:

J(\theta)=\left\{\begin{aligned}1, Y\neq{f(x)}\\0, Y=f(x)\\\end{aligned}\right.

感知器损失函数:

J(\theta)=\left\{\begin{aligned}1, |Y-f(x)|> t \\0, |Y-f(x)|\le{t}\\\end{aligned}\right

平方和损失函数:

J(\theta)=\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^2

绝对损失函数:

J(\theta)=\sum_{i=1}^{m}|h_{\theta}(x^{(i)})-y^{(i)}|

对数损失函数:

 

J(\theta)=-\sum_{i=1}^{m}(y^{(i)}\log{h_{\theta}(x^{(i)})})

代价函数(Cost Function)定义在整个训练集上,是所有样本误差的平均值,也就是损失函数的平均,比如:

 

Cost(\theta)=\frac{1}{N}\sum_{i=1}^N (\hat{y_i}-y_i)^2,其中 \hat{y_i}=h_{\theta}(x_i)


目标函数(Object Function)是最终需要优化的函数

Obj(\theta)=\frac{1}{N}\sum_{i = 1}^{N}loss(\hat{y_i},y_i)
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值