再次理解信号采样定理(低通抽样定理)

以前对低通信号的采样定理简单理解为:必须要以信号的最高频率的2倍进行采样,否则就恢复不出来原信号,原因是采样频率Fs较小时,信号频谱发生了混叠,所以无法恢复。
仔细想想,这样理解当然正确,可以给出简单推导:
首先对信号采样相当于原信号f(t)f(t)与抽样信号δ\deltaT(t)相乘,而δ\deltaT(t)是周期性的单位冲激信号,傅里叶变换如下式:

时域相乘相当于频域卷积,所以采样后的信号的频谱就相当于f(t)f(t)的频谱的周期扩展, 周期就是ω\omega1(也即Fs),那么如果以小于2FH的采样频率采样,则周期扩展后频谱会发生混叠,无法识别原频谱。
在这里插入图片描述
因为频谱都是周期的,所以在分析时只需要取-Fs/2-Fs/2之间就行了,至于为什么,陈爱军老师给出了一个解释:
1、凭直觉,发生混叠时我们观察到的一般都是接近零频的混淆频率,也就是比较低的频率。例如:以fs=8Hz的采样频率分别对f1=5Hz、f2=13Hz、f3=21Hz的复指数信号进行采样,我们根据采样信号判断,一般都会认为复指数信号的频率是-3Hz=f1-fs=f2-2fs=f3-3fs,而不会认为是5Hz或者其它频率。
2、数模转换时,DAC一般选择最接近零频的混淆频率转换成模拟信号。
参考:http://www.txrjy.com/thread-394879-115-1.html

那么在实际取定采样率的时候,假如突然Fs/2外突然有干扰信号或者噪声怎么办,那么这个信号肯定会被混叠到-Fs/2-Fs/2内造成干扰。
在这里插入图片描述
信号是如何恢复的呢?上述采样后的信号经过一个低通滤波器就还原了原来的信号,再傅里叶反变换就行了。当然在实际中没有单位冲激脉冲,通过平顶抽样,这相当与在原来周期性单位冲激脉冲的基础上卷积了一个矩形信号,那么频谱就是乘以一个sinc函数,恢复的话先除以一个sinc函数,再经过一个低通滤波器就行了。
通过上面的频谱周期扩展,假如某个信号是10Hz附近,但是我用8Hz采样,虽然不满足奈奎斯特采样定理,但是通过混叠后依然可以把频谱移到低频,这样不也是可以获得吗?答案是正确的,但是这样要求原信号在低频本来是不存在频谱的,这不就是带通信号采样定理吗?

展开阅读全文

Python数据分析与挖掘

01-08
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以过数据分析来优化产品,营销人员可以过数据分析改进营销策略,产品经理可以过数据分析洞察用户习惯,金融从业者可以过数据分析规避投资风险,程序员可以过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 游动-白 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值