8、与互联网进行有意义的对话

与互联网进行有意义的对话

1. 大语言模型与聊天机器人的兴起

随机鹦鹉大语言模型是经过训练的预测文本系统,旨在模仿互联网的语言风格进行交流。OpenAI的ChatGPT以及其他公司类似系统的巨大成功带来了两大发展。其一,将互联网模型以聊天机器人的形式呈现,通过提示它预测能延续对话的文本;其二,商业护栏机制迅速发展,以避免互联网上某些不当的表达方式,同时强调其他合适的表达。

早期的大语言模型,如OpenAI的GPT - n系列,需通过编程API来访问和实验。将这些编码研究界面简化为第一人称的文本交流是一项卓越的创新,这让我想起谷歌搜索引擎的首次推出,其简洁的纯文本输入框和“我感觉幸运”按钮,比之前的所有搜索引擎都简单得多。许多研究人员(包括我自己)多年来一直在对大语言模型进行实验,但聊天机器人风格的简单用户界面引发了公众的强烈反响。

然而,敏锐的批评者很快发现这种表面的简单具有误导性。尽管ChatGPT经过训练能输出类似对话的内容,但它并非传统意义上的对话伙伴。Clarisse Sieckenius de Souza在其关于人机交互符号工程学的经典著作中,将人类对话理论应用于用户界面设计,她指出用户界面中的真正对话是用户与构建系统的设计者之间的对话。与软件的对话错觉实际上是与“设计者的代理”的对话。计算机看似通过用户界面直接与用户“交谈”,但实际上只是在传递预先编程的信息,就像鹦鹉重复之前听到的词语一样。

2. 互联网文本的作者与内容

大语言模型被训练从互联网获取信息,那么计算机代理代表他人“像互联网一样说话”意味着什么呢?互联网上的文本作者形形色色。有些是善意的好人,如维基百科的编辑、积极的记者或撰写博客和文章的教授,但他们可能会忽视自

内容概要:本文详细介绍了一个基于MATLAB实现的PCA-RNN融合模型项目,旨在通过主成分分析(PCA)对高维多特征数据进行降维去噪,提取关键特征后输入循环神经网络(RNN),特别是LSTM结构,进行多特征时序分类预测。项目涵盖了从数据生成、预处理、PCA降维、序列重构、RNN网络构建、训练调优、性能评估到GUI可视化界面开发的完整流程,并提供了详细的代码实现和系统部署方案。该模型在医疗、金融、智能制造、环境监测等多个领域具有广泛应用前景,具备高效降维、捕捉时序依赖、提升预测精度和可解释性强等特点。; 适合人群:具备一定MATLAB编程基础,熟悉机器学习深度学习基本概念的高校学生、科研人员及从事数据分析、智能预测相关工作的工程师;尤其适合希望掌握多特征时序分类建模可视化系统开发的技术人员。; 使用场景及目标:①解决高维多特征数据中存在的冗余噪声问题,实现高效特征压缩;②对具有时间依赖性的复杂序列数据进行精准分类预测;③构建端到端自动化预测系统,支持实时推理工程化部署;④通过GUI界面降低使用门槛,便于非专业用户操作结果解读。; 阅读建议:建议读者结合文中提供的完整代码逐模块运行调试,重点关注数据预处理、PCA降维逻辑、RNN时序建模结构设计以及GUI回调函数的实现机制。同时可尝试更换实际业务数据进行迁移应用,并利用超参数调优交叉验证提升模型稳定性,深入理解整个智能预测系统的构建流程工程落地要点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值