数据分析代码
文章平均质量分 71
数据分析代码
小白学习记录
用来记录自己python学习,希望一切都顺利
展开
-
实战excel
文本为Excel中的常见格式,自由地使用Excel进行数据分析、数据统计,解放Excel不再为Excel所困原创 2023-01-31 15:24:15 · 501 阅读 · 0 评论 -
数据分析-excel
无原创 2022-10-27 21:08:57 · 293 阅读 · 0 评论 -
数据分析之数据查看1
动手学数据分析以泰坦尼克号数据为例第一章:数据载入及初步观察1.数据集下载数据集下载 https://www.kaggle.com/c/titanic/overview2.数据查看import pandas as pdimport numpy as np# 1.读取数据,读取的时加表头data=pd.read_csv('train.csv',names=["乘客ID","是否幸存","乘客等级(1/2/3等舱位)","乘客姓名","性别","年龄","堂兄弟/妹个数","父母与小孩个数"原创 2022-01-09 15:11:13 · 1059 阅读 · 0 评论 -
动手学数据分析之数据清洗2
第二章:数据清洗及特征处理开始之前,导入numpy、pandas包和数据#加载所需的库import numpy as npimport pandas as pd#加载数据train.csvdata=pd.read_csv('train.csv',header=0,encoding='utf-8')data.head(10).append(data.tail(10))2.1数据清洗简述我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续原创 2022-01-13 19:12:34 · 274 阅读 · 1 评论 -
动手学数据分析之数据重构3
动手学数据分析3数据重构1.数据的合并# 0、导入基本库import pandas as pdimport numpy as nptext_left_up = pd.read_csv('text_left_up.csv')text_right_up = pd.read_csv('text_right_up.csv')text_left_down = pd.read_csv('text_left_down.csv')text_right_down = pd.read_csv('text_r原创 2022-01-14 12:16:27 · 672 阅读 · 0 评论 -
动手学数据分析之数据可视化4
动手学数据分析4数据可视化# 1.导入所需包import numpy as npimport pandas as pdimport matplotlib.pyplot as plt# 2.导入文件text = pd.read_csv(r'result.csv')text.head() # 查看文件# 3.可视化展示## 3.1泰坦尼克号数据集中男女中生存人数分布情况### 法一import matplotlib.pyplot as plttext.groupby(['Sex原创 2022-01-16 19:28:07 · 829 阅读 · 0 评论 -
动手学数据分析-模型构建与评估5
动手学数据分析51. 模型的建立# 导入库import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsfrom IPython.display import Image# 设置图片格式plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] =原创 2022-01-19 16:57:35 · 828 阅读 · 0 评论 -
爬虫学习小白笔记
爬虫原创 2022-10-27 21:10:23 · 145 阅读 · 0 评论 -
数据可视化(matplotlib)
数据可视化本文只为记录自己的学习,内容来自各位大佬,来源众多,故不挂了。若是需要的私信我,我来挂出大佬原文Matplotlib 是专门用于开发2D图表(包括3D图表)的python库对应的JS库有 D3 (opens new window)echarts官网:Matplotlib一、三层结构:容器层画板层Canvas画布层Figure绘图层/坐标系辅助显示层图像层二、各种图形绘制2.0 、多坐标系2.0.1 最初图表# 温度变化折线图import matplotlib原创 2021-11-15 15:38:48 · 1804 阅读 · 0 评论 -
绘图模板1(matplotlib)
Matplotlib 是专门用于开发2D图表(三层结构)容器层画板层Canvas画布层Figure绘图层/坐标系辅助显示层图像层import matplotlib.pyplot as pltimport numpy as npimport matplotlib as mpl二、通用绘画模板–单折线图# 1.数据准备x = range(60)y= [random.uniform(15,18) for i in x]# 2. 中文显示问题plt.rcParams原创 2022-05-19 15:48:46 · 1403 阅读 · 0 评论 -
绘图模板(matplotlib)2
使用 plt.subplots 绘制均匀状态下的子图tight_layout 函数可以调整子图的相对大小使字符不会重叠# 导库及准备工作import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport matplotlib.dates as mdatesimport datetimeplt.rcParams['font.sans-serif'原创 2022-05-19 23:14:48 · 250 阅读 · 0 评论 -
tableau数据可视化
ta'bleau原创 2022-10-27 21:09:49 · 1388 阅读 · 0 评论 -
numpy学习笔记
Numpynumpy 使用ndarray对象处理多维数组,该对象是一个快速而灵活的大数据容器一、ndarray相同类型的“items”的集合import numpy as npscore=np.array([1,2,3],dtype='float') # 转换为array格式,创建数组时指定类型print("数据维度的元组",score.shape)print('数据维数',score.ndim)print('数据中元素个数',score.size)print('一个数据元素的长度',sc原创 2021-11-30 16:49:36 · 1573 阅读 · 0 评论 -
pandas读取文件
读取文件一、pandas读取文件用法1、pandas读取xlsx、xls文件import pandas as pddata=pd.read_excel('path',sheetname='sheet1',header=0,names=['第一列','第二列','第三列'])path:要读取的文件的绝对路径sheetname:指定读取excel中的哪一个工作表,默认sheetname=0,即默认读取excel中的第一个工作表若sheetname = ‘sheet1’,即读取excel中原创 2021-11-15 20:17:56 · 18749 阅读 · 2 评论 -
pandas基础学习笔记(简略版)
1、DataFrame既有行索引(index)又有列索引(columns)的二维数组# 生成dataframestock=[f'股票{i}' for i in range(10)]date=pd.date_range(start='20211201',priods=5,freq='B')data1=pd.DataFrame(stock_change,index=stock,columns=date)data2=pd.DataFrame({'month':[1,2,3,45,5],原创 2021-12-02 21:28:33 · 1284 阅读 · 0 评论 -
pandas基础学习笔记
pandas学习笔记作用:数据处理工具为什么用:便捷的数据处理能力读取文件方便封装了Matplotlib、Numpy的画图与计算核心数据结构:DataFrame、SeriesDataFrame既有行索引(index)又有列索引(columns)的二维数组用法:给numpy生成的数组加行、列索引属性:index、columns、values、shape方法:head()、tail()例:生成索引import numpy as npimport pandas as原创 2021-12-01 19:38:12 · 310 阅读 · 0 评论 -
pandas高级数据处理学习笔记
pandas高级数据处理学习笔记视频来源:https://www.bilibili.com/video/BV1xt411v7z9?p=56一、缺失值处理缺失值是Nan类型1.1 判断是否存在缺失值Nanpd.isnull(df)pd.notnull(df)实例import pandas as pdimport numpy as npdata=pd.read_csv('')np.any(pd.isnull(data)) # 返回True,说明存在缺失值pd.isnull(d原创 2021-12-03 14:43:18 · 214 阅读 · 0 评论 -
pandas高级数据处理学习笔记(简略版)
pandas高级数据处理学习笔记(简略版)视频来源:https://www.bilibili.com/video/BV1xt411v7z9?p=56一、缺失值处理import pandas as pd1、判断是否存在缺失值data=pd.read_csv('./1.csv')pd.isnull(data).any() # 返回True说明存在缺失值pd.notnull(data).all() # 返回False说明存在缺失值2、缺失值是nandata.dropna(inplace=Tru原创 2021-12-03 14:43:54 · 187 阅读 · 0 评论 -
dataframe常用技巧
疑难杂症记录1、os小结os.getcwd()函数 #获得当前的路径os.path.sep: #路径分隔符 (相当于就是‘/’的作用)os.path.join(os.getcwd(),‘aaa’, ‘bbb’, ‘ccc’) 拼接出来多级目录:E:\test\aaa\bbb\cccos.path.abspath(path) #返回绝对路径os.path.basename(path) #返回文件名path = os.path.abspath(os.getcwd())原创 2022-03-13 20:34:56 · 1456 阅读 · 0 评论