杂集
文章平均质量分 80
理论杂集
小白学习记录
用来记录自己python学习,希望一切都顺利
展开
-
python数据处理技巧一
python–字符串处理技巧1、+操作对字符串组合a="jupyter"b="notebook"print(a+b)---result---jupyternotebook2、*操作重复字符串个数a="jupyter notebook\n"print(a*5)---result---jupyter notebookjupyter notebookjupyter notebookjupyter notebookjupyter notebook3、in操作用于判断某个原创 2021-11-30 19:54:12 · 828 阅读 · 0 评论 -
git 版本管理
git 版本管理原创 2022-04-30 18:37:38 · 298 阅读 · 0 评论 -
windows常用dos命令
windows常用dos命令1、打开CMD的方式:开始+系统+命令提示符win键+R 输入cmd打开控制台在任意的文件夹下边,按住Shift+鼠标右键点击,在此处打开命令行窗口(power shell)资源管理器的地址栏前面加CMD+空格+路径管理员方式运行:选择以管理员方式运行(获取最高层次权限)2、常用的dos命令:1. #盘符切换2. #查看当前目录下的所有文件 dir3. #切换目录 cd (change directory) cd/d D:(进入D盘) cd/d F:原创 2021-11-15 18:58:50 · 1221 阅读 · 0 评论 -
matlab数据整合
matlab数据整合内容来源众多,故不一一挂出,本文章仅仅为自己记录学习内容,如果相关内容涉及他人原创,需要删除或者挂原文链接的联系我。一、读取数据matlab 文本文件的读写可以分为两类,一类是高级函数,一类是底层函数。高级函数运用起来简单,但是定制性差。底层函数用法复杂,灵活性高1、load/importdata/csvread对于简单文本读取(文本内容只包括数值,并且以逗号或者空格为分隔符),三个函数用法基本一致。load、importdata常见用法:datapath=[datapa原创 2021-11-15 15:14:00 · 6111 阅读 · 0 评论 -
matlab基本语法
MATLAB基本语法注意事项1、语句后面加分号,不是交互式,不加分号,会同时打印结果,即交互式。2、字符串使用单引号才可以。3、变量赋值不需要提前声明,随时使用。4、clear清除变量,clc清除屏幕。5、who和whos查看我们已经拥有的变量的各项树形。6、类型强制转换。后缀名是 .m注释符号是 %建议在所有语句后面加分号(;),否则运行时会当作交互式命令输出结果,从而掩盖我们的重要信息。文件名仅包含字母、下划线、数字且不能以数字开头。编写文件前检查自己是否在工作目录一、MA原创 2021-11-15 19:08:40 · 3372 阅读 · 0 评论 -
线性与非线性规划
线性与非线性规划一、线性规划(LP)数学模型都是求一组非负解,在满足一组以线性等式或线性不等式所表示的限制条件下,使一个线性函数取得最优值(最大值或者最小值)标准型:maxz=∑j=1ncjxjs.t.∑j=1naijxj=bj(i=1,2,3...)s.t.xj≥0(j=1,2,3...)max z=\sum_{j=1}^{n}{c_jx_j}\\s.t.\sum_{j=1}^{n}{a_{ij}x_j}=b_j\\(i=1,2,3...)s.t.x_j\geq0(j=1,2,3...)m原创 2021-11-28 21:40:49 · 3825 阅读 · 0 评论 -
凸优化笔记
最优化问题和求解在统计计算中广泛用到求最小(最大)值点或求方程的根的算法比如,参数最大似然估计、置信区间的统计量法、回归分析参数估计、 惩罚似然估计、惩罚最小二乘估计,等等。求最小值点或最大值点的问题称为最优化问题(或称优化问题),最优 化问题和求方程的根经常具有类似的算法。有些情况下,可以得到解的解析表达式;更多的情况只能通过数值迭 代算法求解梯度与海色阵设 f(x) 是 $R^d $上的多元函数,如果 f(x) 有一阶偏导数,则记 f(x) 的 梯度向量为g(x)=∇f(x)=(∂f(x)原创 2021-10-05 16:53:17 · 1530 阅读 · 0 评论 -
大数据下机械智能诊断的机遇与挑战,阅读文献系列(一)
阅读文献系列(一)由于健忘,额,可能是年龄大了,对自己的论文记录进行个记录论文题目:大数据下机械智能诊断的机遇与挑战文章链接:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=JXXB201805011&uniplatform=NZKPT&v=BaNEOKJ4Vil9aoMMOQ7LDrF6beGPFsLuLZFQtl00iYZEPWjEDtN2HL原创 2021-11-23 17:21:52 · 3084 阅读 · 0 评论 -
吃瓜学习第一天
吃瓜学习第一天(1,2章)1、绪论1.1 基本术语二分类:对只涉及两个类别的‘’二分类“任务,通常称其中一个类为”正类“,另一个为’‘反类”。回归任务:是通过对训练集进行学习,建立一个从输入空间x到输出空间y的映射f: x→y,y=R(R为实数集)二分类任务:通常令y={0,1};多分类任务:|y|>2;“泛化”能力:学到的模型适用于新样本(测试样本)能力通常假设样本空间中全体样本服从一个**“未知”分布**,我们获得的每个样本都是独立从这个分布上采样得到的,即“独立同分布”;一般而言原创 2022-03-15 15:37:14 · 958 阅读 · 0 评论 -
吃瓜学习第二天(第三章)
吃瓜学习第二天(第三章)学习书籍:西瓜书、南瓜书学习视频:https://www.bilibili.com/video/BV1Mh411e7VU?p=33 线性模型文章架构,1、线性模型基本形式 ,2、线性回归公式推导,3、线性回归代码3.1 基本形式机器学习三要素:模型:根据具体问题,确定假设空间 (即y=kx+by=kx+by=kx+b还是y=kx2+by=kx^2+by=kx2+b,归根到底就是拟合方式)策略:根据评价标准,确定选取最优模型的策略(通常会产出一个“损失函数”)原创 2022-03-17 17:44:50 · 1211 阅读 · 0 评论