有限域方法下的同余问题研究
在数学领域中,有限域方法在研究计数序列的同余性质方面有着重要的应用。下面将深入探讨相关内容,包括汉克尔矩阵的应用、特征多项式以及最小多项式等方面。
1. 汉克尔矩阵的应用
在研究计数序列的模 $p$ 性质时,有限域框架为我们提供了有效的途径。计数序列往往满足模 $p$ 的线性同余关系,而有限域上的线性同余理论已经有了较为完善的发展。
假设我们要寻找形如 $A_{n + k} \equiv a_0A_n + a_1A_{n + 1} + \cdots + a_{k - 1}A_{n + k - 1} \pmod{p}$ 的同余式,这是一个 $k$ 阶的递归关系。例如,对于贝尔数序列 $B_n$,有 $B_{n + p} \equiv 1 \cdot B_n + 1 \cdot B_{n + 1}$,这就是 Touchard 同余式;对于 Fubini 数,$F_{n + p} \equiv F_{n + 1} \pmod{p}$。
为了证明这类同余式,我们可以将其转化为线性方程组。考虑 $n$ 从 $0$ 到 $p - 1$ 的情况,得到如下线性方程组:
[
\begin{cases}
A_k \equiv a_0A_0 + a_1A_1 + \cdots + a_{k - 1}A_{k - 1} \pmod{p}\
A_{k + 1} \equiv a_0A_1 + a_1A_2 + \cdots + a_{k - 1}A_k \pmod{p}\
\cdots\
A_{2k - 1} \equiv a_0A_{k - 1} + a_1A_k + \cdots + a_{k
超级会员免费看
订阅专栏 解锁全文
86万+

被折叠的 条评论
为什么被折叠?



