使用玻森情感词典,来自定义计算一句话、或者一段文字的情感值。
BosonNLP_sentiment_score.txt下载链接:
https://download.csdn.net/download/fgg1234567890/16167065
import pandas as pd
import jieba
# 使用一个行业标准的情感词典——玻森情感词典,来自定义计算一句话、或者一段文字的情感值。
# 整个过程如下:
# 加载玻森情感词典;
# jieba 分词;
# 获取句子得分。
# 加载情感词典
df = pd.read_table("./数据集/BosonNLP_sentiment_score.txt", sep= " ", names=['key','score'])
print(df.head())
# 将词 key 和对应得分 score 转成2个 list 列表,目的是找到词 key 的时候,能对应获取到 score 值
key = df['key'].values.tolist()
score = df['score'].values.tolist()
# 定义分词和统计得分函数
def getscore(line):
segs = jieba.lcut(line) #分词
score_list = [score[key.index(x)] for x in segs if(x in key)]
return sum(score_list) #计算得分
line = "今天天气很好,我很开心"
print(round(getscore(line), 2))
line = "今天下雨,心情也受到影响。"
print(round(getscore(line), 2))
原文:
https://soyoger.blog.csdn.net/article/details/108729401