机器学习--Flask 发布一个预测模型

通过 Flask 制作一个简单的微服务预测接口,实现模型的预测和浏览器交互功能:

import joblib
from flask import Flask, request
import numpy as np

'''
# 不使用浏览器,常规的控制台交互
model_path = ".//model.pkl"
model = joblib.load(model_path)
sen = [[['坚决', 'a', 'ad', '1_v'],
        ['惩治', 'v', 'v', '0_Root'],
        ['贪污', 'v', 'v', '1_v'],
        ['贿赂', 'n', 'n', '-1_v'],
        ['等', 'u', 'udeng', '-1_v'],
        ['经济', 'n', 'n', '1_v'],
        ['犯罪', 'v', 'vn', '-2_v']]]
print(model.predict(sen))
'''

# Flask 实现模型和浏览器进行交互
app = Flask(__name__)

@app.route('/')
def hello_world():
    return '你好'

@app.route('/predict/<sen>')
def predict(sen):
    print("参数:", type(sen), sen)  # 得到的为字符串而不是数组,故结果不对,解决办法??? 没想到。。
    result = model.predict(sen)
    return str(result)

if __name__ == '__main__':
    app.config['JSON_AS_ASCII'] = False  # 中文乱码
    model_path = ".//model.pkl"
    model = joblib.load(model_path)
    app.run()

原文:
https://soyoger.blog.csdn.net/article/details/108729394

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值