一·数据流
首先明确数据流概念:数据流是连续不断生成的、快速变化的无界数据序列
数据流类型:
数据流大致可以分为四种类型
1.连续型数据流:不断地产生数据,数据稳定速度输入系统。
2.突发型数据流:在某特定时间或者事件的处罚下,产生大量数据。
3.周期性数据流:按一定的时间周期产生数据
4.事件驱动型数据流:由特定的事件触发而产生的数据。事件发生后,相关数据会输入系统
数据流特点:
1.动态性:数据流是不断变化着的,数据的产生和流动没有固定的形态和结构。
2.顺序性:数据通常按照产生的时间、事件顺序依次出现
3.不可预测性:数据流的大小、速度和内容很难预测
4.无限性:数据流可以无限持续地产生
5.价值时效性:数据流价值通常具有时效性,随时间推移,某些数据会失去价值。
6.数据分布不均匀:数据流中的数据在不同时间段和位置上分布不均匀
二·数据流处理
数据流处理是一种针对连续不断生成的、快速变化的数据流进行实时分析和处理的技术。它能够在数据产生的同时对其进行捕获、转换、分析和响应,以便及时获取有价值的信息和做出决策。
数据流处理工具:
1.流处理框架: Spark Streaming、F