给你一个整数 n ,请你返回所有 0 到 1 之间(不包括 0 和 1)满足分母小于等于 n 的 最简 分数 。分数可以以 任意 顺序返回。
示例1:
输入:n = 2
输出:[“1/2”]
解释:“1/2” 是唯一一个分母小于等于 2 的最简分数。
示例2:
输入:n = 4
输出:[“1/2”,“1/3”,“1/4”,“2/3”,“3/4”]
解释:“2/4” 不是最简分数,因为它可以化简为 “1/2” 。
思路
本题主要是如何判断是否位最简分数,即判断两个数字的最大公约数是否为1。欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:gcd(a,b) = gcd(b,a mod b)
class Solution:
def simplifiedFractions(self, n: int) -> List[str]:
# python 自带gcd函数,故该函数定义可省略
# def gcd(x,y):
# return x if y == 0 else gcd(y,x%y)
result = ["1/%d"%i for i in range(2,n + 1)]
for a in range(2,n):
for b in range(a + 1, n + 1):
if gcd(b,a) == 1: result.append("%d/%d"%(a,b))
return result