【学习笔记】李宏毅老师机器学习2020_Course Introduction

Course Introduction

2020.7.6

机器学习就是自动找函数

举例1:Speech Recognition,以声音信号为输入,文字为输出,但是这一函数方程很复杂。
f ( 声 音 信 号 ) = 文 字 输 出 f(声音信号)=文字输出 f()=
举例2:Image Recognition,输入是一张图片,输出是图片中的内容
f ( 图 片 ) = 文 字 输 出 f(图片)=文字输出 f()=
举例3:Playing Go,输入是当前棋盘黑子和白子的个数、位置,输出是下一步落子的位置
举例4:Dialogue System,输入是what you said,输出是system response

你想找什么样的函数?

Regression:输出是一个数值(The output of the function is a scalar)
Binary Classfication:输出只有是或否两个可能
Muti-class Classification:输出n个选项中的其中一个
Generation:生成,如机器翻译、机器画图

怎么告诉机器你想找什么样的函数?

Supervised Learning(监督学习):给机器Labeled Data,给出输入及其对应的输出标签。机器评估函数的好坏Loss,如标记错误率。
Reinforcement Learning(强化学习):监督学习是给机器正确的输出,强化学习只需要引导机器学习的方向。
在围棋中,监督学习是在某一特定情况下告诉机器应该下哪个位置,而强化学习则是不停地跟机器下棋并给出输或赢的反馈Reward。Alpha Go is supervised learning + reinforcement learning
Unsupervised Learning(无监督学习):给机器数据让机器自己学习

机器怎么找出你想要的函数?

给定函数寻找范围:Linear、Network Architecture
函数寻找方法:Gradient Descent(梯度下降)

前沿研究

Explainable AI(可解释的人工智能):机器为什么做出这样的选择
Adversarial Attack(对抗攻击):为机器添加刻意设置的噪音影响
Network Compression(网络压缩):把网络缩小可以放在电脑或手机上运行
Anomaly Detection(异常检测):让机器知道“我不知道”这件事
Transfer Learning(迁移学习),Domain Adversarial Learning:当训练数据与测试数据差异较大时,进行一定转换
Meta Learning(元学习):Learn to learn学习如何学习,写一个程序,这个程序能够写出具有学习能力的程序(禁止套娃)
能不能让机器聪明一点:目前机器需要很长时间训练才可以得到一定的效果
Life-long Learning/Continuous Learning/Nerver Ending Learing/Incremental Learning(终身学习):目前机器学习是基于单独任务的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值