【洛谷】P4167 [Violet]樱花

题面

又懒得弄题面,开个传送门吧

分析

我们先把方程写出来

1 x + 1 y = 1 n ! \frac {1}{x}+\frac {1}{y}=\frac {1}{n!} x1+y1=n!1

现在我们知道的条件是x,y都是正整数, 所以我们考虑单独通过式子的变换将x,y表示出来,表示出来的式子算出来也一定是个整数

1 x + 1 y = 1 n ! \frac {1}{x}+\frac {1}{y}=\frac {1}{n!} x1+y1=n!1

1 x = 1 n ! − 1 y \frac {1}{x}=\frac {1}{n!}-\frac{1}{y} x1=n!1y1

1 x = y − n ! n ! × y \frac {1}{x}=\frac {y-n!}{n!\times y} x1=n!×yyn!

x = n ! × y y − n ! x=\frac {n!\times y}{y-n!} x=yn!n!×y

那么 n ! × y y − n ! \frac {n!\times y}{y-n!} yn!n!×y一定是一个整数

分母不太好看,不利于观察,所以假设 a = y − n ! a=y-n! a=yn!,那么 y = a + n ! y=a+n! y=a+n!

那么原方程可以化简为

x = n ! × ( a + n ! ) a = n ! × a + n ! × n ! a = n ! + n ! × n ! a x=\frac {n!\times (a+n!)}{a}=\frac {n!\times a+n!\times n!}{a}=n!+\frac {n!\times n!}{a} x=an!×(a+n!)=an!×a+n!×n!=n!+an!×n!

所以,如果 a a a n ! × n ! n!\times n! n!×n!的约数,根据 y = a + n ! y=a+n! y=a+n! x = n ! + n ! × n ! a x=n!+\frac {n!\times n!}{a} x=n!+an!×n!可以知道x,y都是正整数

所以 n ! × n ! n!\times n! n!×n!有多少个约数就有多少组解,直接分解质因数然后乘法原理计算就好了

Code

#include<cstdio>
int n,p[1000005],unp[1000005],mn[1000005],mp[1000005];
void prework()
{
    unp[1]=1;
    for(int i=2;i<=1000000;i++)
    {
        if(!unp[i])p[++p[0]]=i,mn[i]=p[0];
        for(int j=1;1ll*p[j]*i<=1000000;j++)
        {
            unp[p[j]*i]=1;mn[p[j]*i]=j;
            if(i%p[j]==0)break;
        }
    }
}
int main()
{
    prework();scanf("%d",&n);
    for(int i=2;i<=n;i++)
    {
        int x=i;
        while(x>1)mp[p[mn[x]]]++,x/=p[mn[x]];
    }
    int ans=1;
    for(int i=1;i<=n;i++)ans=1ll*ans*(mp[i]*2+1)%1000000007;
    printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值