题面
分析
我们先把方程写出来
1 x + 1 y = 1 n ! \frac {1}{x}+\frac {1}{y}=\frac {1}{n!} x1+y1=n!1
现在我们知道的条件是x,y都是正整数, 所以我们考虑单独通过式子的变换将x,y表示出来,表示出来的式子算出来也一定是个整数
1 x + 1 y = 1 n ! \frac {1}{x}+\frac {1}{y}=\frac {1}{n!} x1+y1=n!1
1 x = 1 n ! − 1 y \frac {1}{x}=\frac {1}{n!}-\frac{1}{y} x1=n!1−y1
1 x = y − n ! n ! × y \frac {1}{x}=\frac {y-n!}{n!\times y} x1=n!×yy−n!
x = n ! × y y − n ! x=\frac {n!\times y}{y-n!} x=y−n!n!×y
那么 n ! × y y − n ! \frac {n!\times y}{y-n!} y−n!n!×y一定是一个整数
分母不太好看,不利于观察,所以假设 a = y − n ! a=y-n! a=y−n!,那么 y = a + n ! y=a+n! y=a+n!
那么原方程可以化简为
x = n ! × ( a + n ! ) a = n ! × a + n ! × n ! a = n ! + n ! × n ! a x=\frac {n!\times (a+n!)}{a}=\frac {n!\times a+n!\times n!}{a}=n!+\frac {n!\times n!}{a} x=an!×(a+n!)=an!×a+n!×n!=n!+an!×n!
所以,如果 a a a是 n ! × n ! n!\times n! n!×n!的约数,根据 y = a + n ! y=a+n! y=a+n!与 x = n ! + n ! × n ! a x=n!+\frac {n!\times n!}{a} x=n!+an!×n!可以知道x,y都是正整数
所以 n ! × n ! n!\times n! n!×n!有多少个约数就有多少组解,直接分解质因数然后乘法原理计算就好了
Code
#include<cstdio>
int n,p[1000005],unp[1000005],mn[1000005],mp[1000005];
void prework()
{
unp[1]=1;
for(int i=2;i<=1000000;i++)
{
if(!unp[i])p[++p[0]]=i,mn[i]=p[0];
for(int j=1;1ll*p[j]*i<=1000000;j++)
{
unp[p[j]*i]=1;mn[p[j]*i]=j;
if(i%p[j]==0)break;
}
}
}
int main()
{
prework();scanf("%d",&n);
for(int i=2;i<=n;i++)
{
int x=i;
while(x>1)mp[p[mn[x]]]++,x/=p[mn[x]];
}
int ans=1;
for(int i=1;i<=n;i++)ans=1ll*ans*(mp[i]*2+1)%1000000007;
printf("%d\n",ans);
}