深度学习流程(五)之优化器

一、常见的三种梯度下降方法

SGD,Batch GD,mini-batch

SGD 训练速度快,收敛慢

Batch GD 训练慢,收敛快

这三种优化方法存在一些问题:

  1. 选择合适的学习率较为困难
  2. 每个参数的学习率是一样的,没有加以区分
  3. 训练中容易困在鞍点,在这种区域所有的优化方向都是0,没有办法继续优化

二、 Momentum

Momentum 是与 SGD 常为结合的一种方法,其不仅会使用当前的梯度,还会积累以前的梯度以确定走向。 v t = η ∗ v t − 1 − α ∗ ∇ θ J ( θ ) v_t = \eta * v_{t-1}-\alpha * \nabla_\theta J(\theta) vt=ηvt1αθJ(θ) θ = θ − v t \theta = \theta-v_t θ=θvt 可以看到,这一方法观察了历史梯度 v t − 1 v_{t-1} vt1 ,如果一致,则当前梯度就会增大,若不一致,当前梯度就会减小。

特点:

  1. 由于不完全依赖当前时刻的梯度方向,训练会比较稳定
  2. 学习更快
  3. 有一定摆脱局部最优的能力(梯度变大直接冲过局部最优值)

三、Nesterov Momentum

整体上看,牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。

梯度下降法师对每次所处位置上的坡度最大的方向;而牛顿法考虑的不仅是坡度大而且希望走完这一步之后,坡度变得更大(因为目光看的更远)。或者说,牛顿法是用一个二次曲面拟合当前所处位置的局部曲面,而梯度下降则是用平面来拟合。

总的来说,牛顿法看的更为长远,所以少走弯路,SGD 只考虑当前局部的最优,没有全局思想。
v t = γ ∗ v t − 1 + α ∗ ∇ θ J ( θ − γ ∗ v t − 1 ) v_t =\gamma *v_{t-1} + \alpha * \nabla_\theta J(\theta-\gamma * v_{t-1}) vt=γvt1+αθJ(θγvt1) θ = θ − v t \theta =\theta -v_t θ=θvt

四、AdaGrad

对于更新频率较大的参数使用较小的学习率更新,否则用较大的学习率进行更新

g t , i g_{t,i} gt,i 为第 t t t 轮第 i i i 个参数的梯度,即 g t , i = ∇ θ J ( θ i ) g_{t,i}=\nabla_\theta J(\theta_i) gt,i=θJ(θi) e t , i = e t − 1 , i + g t , i 2 e_{t,i} = e_{t-1,i}+g_{t,i}^2 et,i=et1,i+gt,i2 θ t + 1 , i = θ t , i − α e t , i + δ ⋅ g t , i \theta_{t+1,i}=\theta_{t,i}-\frac{\alpha}{\sqrt{e_{t,i}}+\delta}\cdot g_{t,i} θt+1,i=θt,iet,i +δαgt,i 其中, α e t , i + δ \frac{\alpha}{\sqrt{e_{t,i}}+\delta} et,i +δα 为自适应的学习率,由于 e t , i e_{t,i} et,i 的存在,梯度更新的越多,学习率就越小,但是其可能出现提前停止。

五、RMSProp

AdaGrad 在理论上有些较好的性质,但是在实践中表现的并不是很好,其根本原因就是随着训练周期的增长,学习率降低的很快,容易导致提前停止。RMSProp算法就在AdaGrad基础上引入了衰减因子,RMSProp在梯度累积的时候,会对“过去”与“现在”做一个平衡,通过超参数进行调节衰减量。
g t , i = ∇ θ J ( θ i ) g_{t,i}=\nabla_\theta J(\theta_i) gt,i=θJ(θi) e t , i = β ∗ e t − 1 , i + ( 1 − β ) ∗ g t , i 2 e_{t,i} = \beta *e_{t-1,i} + (1-\beta)* g_{t,i}^2 et,i=βet1,i+(1β)gt,i2 θ t + 1 , i = θ t , i − α e t , i + δ ⋅ g t , i \theta_{t+1,i}=\theta_{t,i}-\frac{\alpha}{\sqrt{e_{t,i}}+\delta}\cdot g_{t,i} θt+1,i=θt,iet,i +δαgt,i
其中, β \beta β 常取作 0.1。

六、Adam

自适应学习率,每次迭代学习率都有个确定的范围。
m t = β 1 m t − 1 + ( 1 − β 1 ) g t m_t=\beta_1 m_{t-1}+(1-\beta_1)g_t mt=β1mt1+(1β1)gt v t = β 2 v t − 1 + ( 1 − β 2 ) g t 2 v_t=\beta_2 v_{t-1}+(1-\beta_2)g_t^2 vt=β2vt1+(1β2)gt2 m t ^ = m t 1 − β 1 t \hat{m_t}=\frac{m_t}{1-\beta_1^t} mt^=1β1tmt v t ^ = v t 1 − β 2 t \hat{v_t}=\frac{v_t}{1-\beta_2^t} vt^=1β2tvt θ t − 1 = θ t − α v t ^ + δ ⋅ m t ^ \theta_{t-1}=\theta_t-\frac{\alpha}{\sqrt{\hat{v_t}}+\delta}\cdot \hat{m_t} θt1=θtvt^ +δαmt^

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值