博客:blog.shinelee.me | 博客园 | CSDN
写在前面
论文状态:Published in CVIU Volume 161 Issue C, August 2017
论文地址:https://arxiv.org/abs/1606.02228
github地址:https://github.com/ducha-aiki/caffenet-benchmark
在这篇文章中,作者在ImageNet上做了大量实验,对比卷积神经网络架构中各项超参数选择的影响,对如何优化网络性能很有启发意义,对比实验包括激活函数(sigmoid、ReLU、ELU、maxout等等)、Batch Normalization (BN)、池化方法与窗口大小(max、average、stochastic等)、学习率decay策略(step, square, square root, linear 等)、输入图像颜色空间与预处理、分类器设计、网络宽度、Batch size、数据集大小、数据集质量等等,具体见下图
实验所用的基础架构(Baseline)从CaffeNet修改而来,有以下几点不同:
- 输入图像resize为128(出于速度考虑)
- fc6和fc7神经元数量从4096减半为2048
- 网络使用LSUV进行初始化
- 移除了LRN层(对准确率无贡献,出于速度考虑移除)
所有性能比较均以基础架构为Baseline,实验中所有超参数调整也都是在Baseline上进行,Baseline accuracy为47.1%,Baseline网络结构如下