AVL树及其调整

5 篇文章 2 订阅

AVL树及其调整

1. 什么是AVL树?

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:
当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。、

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
1. 它的左右子树都是AVL树
2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

二叉搜索树

注:
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在(LogN) ,搜索时间复杂度O(LogN)

2. AVL树节点定义代码
template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
	: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
	, _data(data), _bf(0)
	{}
	AVLTreeNode<T>* _pLeft; // 该节点的左孩子
	AVLTreeNode<T>* _pRight; // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲
	T _data;
	int _bf; // 该节点的平衡因子
};
3. AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入 过程可以分为两步:

1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子

4. AVL树的旋转
4.1. 旋转的概念以及代码表示

如果在一棵原本是平衡的AVL树中插入了一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种

1. 新节点插入较高左子树的左侧—左左:右单旋
如下图:
右单旋
代码表示:

/*
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,
30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,
只能将60左子树的高度减少一层,右子树增加一层,即将左子树向上提,
这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,
右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子
即可。在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在
2. 60可能是根节点,也可能是子树
如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树
*/

void _RotateR(PNode pParent)
{
	// pSubL: 表示pParent的左孩子
	// pSubLR: 表示pParent左孩子的右孩子,注意:旋转完成之后,30的右孩子作为双亲的左孩子
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;
	pParent->_pLeft = pSubLR;
	// 如果30的左孩子的右孩子存在,更新亲双亲
	if(pSubLR)
		pSubLR->_pParent = pParent;
	// 60 作为 30的右孩子
	pSubL->_pRight = pParent;
	// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
	pPParent = pParent->_pParent;
	// 更新60的双亲
	pParent->_pParent = pSubL;
	// 更新30的双亲
	pSubL->_pParent = pPParent;
	// 如果60是根节点,根新指向根节点的指针
	if(NULL == pPParent)
	{
		_pRoot = pSubL;
		pSubL->_pParent = NULL;
	}
	else
	{
		// 如果60是子树,可能是其双亲的左子树,也可能是右子树
		if(pPParent->_pLeft == pParent)
		pPParent->_pLeft = pSubL;
		else
		pPParent->_pRight = pSubL;
	}
	
	// 根据调整后的结构更新部分节点的平衡因子
	pParent->_bf = pSubL->_bf = 0;
}

2.新节点插入较高右子树的右侧—右右:左单旋
左单旋
类似于右单旋可以写出如下代码:

void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	parent->_left = subLR;
	if (subLR)
		subLR->_parent = parent;
	subL->_right = parent;
	Node* ppNode = parent->_parent;
	parent->_parent = subL;
	if (_root == parent)
	{
		_root = subL;
		subL->_parent = nullptr;
	}
	else
	{
		if (ppNode->_left == parent)
			ppNode->_left = subL;
		else
			ppNode->_right = subL;
		subL->_parent = ppNode;
	}
	parent->_bf = subL->_bf = 0;
}

3. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋
左右单旋

将双旋变成单旋后再旋转,:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
{
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;
	// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
	int bf = pSubLR->_bf;
	// 先对30进行左单旋
	_RotateL(pParent->_pLeft);
	// 再对90进行右单旋
	_RotateR(pParent);
	if(1 == bf)
		pSubL->_bf = -1;
	else if(-1 == bf)
		pParent->_bf = 1;
}

4. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

右左双旋
参考左右双旋可以写出以下代码

void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;
	RotateR(parent->_right);
	RotateL(parent);

	// 对应图理解平衡因子调节
	if (bf == -1)
	{
		parent->_bf = 0;
		subR->_bf = 1;
		subRL->_bf = 0;
	}
	
	else if (bf == 1)
	{
		subR->_bf = 0;
		parent->_bf = -1;
		subRL->_bf = 0;
	}

	else if (bf == 0)
	{
		subR->_bf = 0;
		parent->_bf = 0;
		subRL->_bf = 0;
	}
}
4.2. 总结

若以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑:
1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR;当pSubR的平衡因子为1时,执行左单旋;当pSubR的平衡因子为-1时,执行右左双旋
2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL;当pSubL的平衡因子为-1是,执行右单旋 当pSubL的平衡因子为1时,执行左右双旋
旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

AVL树的模拟实现(github链接):代码传送门

5. AVL树的删除

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,当与删除节点不同时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

6. AVL树性能分析

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即O(logN)。但是如果要对AVL树做一些结构修改的操作,性能会非常低下.比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。

因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值