Tree | AVL树定义、调整、建立与删除

本文目录

一、AVL树的基本概念

1、二叉查找树的弊端

2、AVL树 —— 优化二叉查找树

二、AVL树的定义

三、AVL树的调整

🔺单旋转 —— 破坏节点与插入节点共线时

1、左旋转(L)

2、右旋转(R)

 

🔺双旋转 —— 破坏节点与插入节点不共线

3、左右旋转(LR)

4、右左旋转(RL)

三、AVL树的建立

四、删除操作


一、AVL树的基本概念

1、二叉查找树的弊端

先谈谈二叉查找树(关于二叉查找树可以看这一篇文章:秒懂二叉查找树

它的特点是左子树的节点值要小于父节点的值,右子树的节点值要大于父节点的值,基于这样的特点,我们在查找某个节点的时候,可以采用二分查找的思想快速找到这个节点,并且对于一个含n个节点的树来说,时间复杂度的理论值期望值O(log n)。

但是具体所花费的时间也要看二叉搜索树的形状,对于元素完全相同的二叉查找树,我们的查找性能(耗时长短)也有可能差别非常大,如下图:

显然,左边是最好的情况,可以说是一棵丰满、对称的二叉树;

而右边是最坏的情况,它其实已经退化成了一条线性表,其搜索的时间复杂度上升为O(n)。

这就说明对于不同的输入顺序来说,我们建立的二叉查找树形状完全可能不同,其性能也有很大差异

2、AVL树 —— 优化二叉查找树

针对以上情况,我们引申出了平衡二叉(查找)树,目的是为了让查找的速度更快

平衡二叉(查找)树种类比较多,AVL树是其中的一种,也是最早发明的一种。

AVL树是一种特殊的二叉查找树,在其基础上又有以下特点:

对于AVL树中的每个节点,它的左子树和右子树的高度之差不会超过1

引入平衡因子的概念: 

某结点的左子树与右子树的高度差即为该结点的平衡因子(BF:Balance Factor)。

平衡二叉树上所有结点的平衡因子只可能是 -1,0 或 1。如果某一结点的平衡因子绝对值大于1则说明此树不是平衡二叉树。

为了方便计算每一结点的平衡因子,我们可以为每个节点赋予height这一属性,表示此节点的高度

二、AVL树的定义

针对AVL树的特点,其节点的基本结构如下:

typedef struct AvlNode {
    int data;
    struct SearchTreeNode *left;
    struct SearchTreeNode *right;
    int height;
} *AVL_TREE, avl_tree;

三、AVL树的调整

当AVL树插入一个元素时,很容易造成某一节点的平衡因子为2,从而失去平衡条件。

为了使其变回avl树,我们可以在插入后,通过旋转调整。

(有关旋转的算法算是比较难的,根据我多次的消化、总结与思考,以下总结了理解起来简洁易懂旋转操作)

 

🔺在看算法之前,为了方便理解,我们先约定几个名词🔺

1、破坏节点:最开始造成让平衡因子 > 1的节点

2、插入节点:插入AVL树即导致它不平衡的节点

比如说下图,在原本平衡的AVL树(左图)中,根据二叉查找树的插入方法,插入65破坏了AVL树的平衡。

可见,60是破坏节点,65是插入节点。

 

待旋转的类型有单旋转双旋转两种,每种下又细分两种,所以总共有四种模型

🔺单旋转 —— 破坏节点与插入节点共线时

1、左旋转(L)

一般模型:

如何判断:破坏节点到插入节点的路径向

具体操作:如上图

▲将k1的左儿子的右子树y挂到k1的左子树上

▲将k1挂到k2的右子树上

 

例如:

具体代码实现: 

/* 左旋转
 * 传入参数:破坏节点 k1
 * 返回:调整完毕的AVL树根节点*/
AVL_TREE SingleRotateWithLeft(AVL_TREE k1) {
    AVL_TREE k2 = k1->left;

    k1->left =k2->right; //将k2的右子树挂到k1的左子树上
    k2->right = k1; //将k1挂到k2的右子树上

    /*更新高度值 */
    k1->height = Max(k1->left->height, k1->right->height) + 1;
    k2->height = Max(k2->left->height, k2->right->height) + 1;
    
    return k2;
}

2、右旋转(R)

一般模型:

如何判断:破坏节点到插入节点的路径向

具体操作:如上图

▲将k1的右儿子的左子树y挂到k1的右子树上

▲将k1挂到k2的左子树上

 

例如:

具体代码实现:

/* 右旋转
 * 传入参数:破坏节点 k1
 * 返回:调整完毕的AVL树根节点*/
AVL_TREE SingleRotateWithRight(AVL_TREE k1) {
    AVL_TREE k2 = k1->right;

    k1->right =k2->left; //将k2的左子树挂到k1的右子树上
    k2->left = k1; //将k1挂到k2的左子树上

    /*更新高度值 */
    k1->height = Max(k1->left->height, k1->right->height) + 1;
    k2->height = Max(k2->left->height, k2->right->height) + 1;

    return k2;
}

 

🔺双旋转 —— 破坏节点与插入节点不共线

注意:双旋转本质可以看作两次单旋转。

3、左右旋转(LR)

一般模型:

如何判断:破坏节点到插入节点的路径先向右后向左

具体操作:如上图 

▲将k1、k2左旋转

▲将k2、k3右旋转

 

例如:

具体代码实现:

/* 左右旋转
 * 传入参数:破坏节点 k3
 * 返回:调整完毕的AVL树根节点 */
AVL_TREE DoubleRotateWithRight(AVL_TREE k3) {

    k3->right = SingleRotateWithLeft(k3->right); // k1,k2左旋转
    return SingleRotateWithRight(k3); // k2,k3右旋转
}

4、右左旋转(RL)

一般模型:

如何判断:破坏节点到插入节点的路径先向左后向右

具体操作:如上图 

▲将k1、k2右旋转

▲将k2、k3左旋转

 

例如:

具体代码实现: 

/* 右左旋转
 * 传入参数:破坏节点 k3
 * 返回:调整完毕的AVL树根节点 */
AVL_TREE DoubleRotateWithLeft(AVL_TREE k3) {

    k3->left = SingleRotateWithRight(k3->left); // k1,k2右旋转
    return SingleRotateWithLeft(k3); // k2,k3左旋转
}

三、AVL树的建立

建立一棵AVL树:从空树开始,即一直向AVL树中正确地插入节点。

插入函数的流程与二叉查找树的一样,只是在插入后加上了旋转调节的步骤。

(二叉查找树的插入函数在这里:秒懂二叉查找树

 

插入函数的代码实现如下:

/* 右左旋转
 * 传入参数:破坏节点 k3
 * 返回:调整完毕的AVL树根节点 */
AVL_TREE DoubleRotateWithLeft(AVL_TREE k3) {

    k3->left = SingleRotateWithRight(k3->left); // k1,k2右旋转
    return SingleRotateWithLeft(k3); // k2,k3左旋转
}


/* 传入参数:
 * 待插入节点数据x,AVL树 T
 * 返回:
 * 插入位置的父节点 */
AVL_TREE Insert(int x, AVL_TREE T) {
    //递归的终点,已经搜索到了树的尽头
    if(!T) {
        T = (AVL_TREE)malloc(sizeof(avl_tree));
        T->data =x;
        T->height = 0;
        T->left = T->right =NULL;
    }
    /* 向左寻找插入位置 */
    else if (x < T->data) {  
        T->left = Insert(x, T->left);
        /* 如果插入后破坏了平衡*/
        if(T->left->height - T->right->height > 1 ) {
            if(x < T->left->data)  //插入节点在左端
                T = SingleRotateWithLeft(T);
            else
                T = DoubleRotateWithLeft(T);
        }
    }
    /* 向右寻找插入位置 */
    else if (x > T->data) { 
        T->right = Insert(x, T->right);
        /* 如果插入后破坏了平衡*/
        if(T->right->height - T->left->height > 1 ) {
            if(x > T->right->data)  //插入节点在右端
                T = SingleRotateWithRight(T);
            else
                T = DoubleRotateWithRight(T);
        }
    }

    //更新高度
    T->height = Max(T->left->height, T->right->height) + 1;
    return T;
}

值得注意的是:以上插入函数,对于已有的元素的插入,会直接返回,不进行插入操作。

四、删除操作

困了,先码到这吧,精彩未完待续...

 

 




End

欢迎关注个人公众号“鸡翅编程”,这里是认真且乖巧的码农一枚,旨在用心写好每一篇文章,平常会把笔记汇总成推送更新~

 

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值