HOG特征详解-----梯度方向直方图


HOG全称histogram of oriented gradients.如翻译成中文就是方向梯度直方图

步骤一:了解图像的梯度

在讲HOG(方向梯度直方图)之前,我们先要知道图像的梯度是什么。

这里我们先用一个最简单的黑白图来演示一下:
在这里插入图片描述

首先我们先计算x方向上的梯度(也就是水平方向),我们要做的是从图像的 左边到右边进行扫描,黑色的像素为0,白色像素值为255,当我们从黑色扫描到白色时,像素值突然从0变到了255,这就产生了一个梯度差,如下图的梯度图像所示:

在这里插入图片描述

可以看到,梯度图像中,因为像素值从0到了255升高了,是个正的梯度,所以白色的部分表示这里是一个正的梯度(圆形的左侧),再继续扫描,从白色突然变到黑色,从255突然变到了0,像素值下降了,是个负梯度,用黑色部分表示负梯度(圆形右侧)

同理,我们可以得出垂直方向上的梯度图像,如下图:

在这里插入图片描述

步骤二:计算每个点的梯度强度和梯度方向

现在知道了什么是梯度之后,我们要如何计算梯度呢?

这里假设一个像素点A,他的上下左右四个方向上的相邻像素值为:
在这里插入图片描述

对于像素点A,要计算水平梯度和竖直梯度,如上图,水平梯度 g x \boldsymbol{g}_{\boldsymbol{x}} gx=30-20=10,竖直梯度 g x \boldsymbol{g}_{\boldsymbol{x}} gx =64-32=32.

那么总的梯度强度值g和梯度方向 θ \boldsymbol{\theta }

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值