See you

strangers are always strange.

HOG特征-梯度方向直方图

简介

  • HOG特征主要是用于目标检测等图像任务中,它能够提取图像中有意义的部分,进而用于分类等任务。

主要流程

  • 给定一张图像,我们可以将其转换为特定大小的图像(不转换也可以,这里假设得到的图像尺寸都是一样的,方便后续的说明),假设尺寸为WH3
  • 设置cell(大小为CxCy),求每个cell的x与y方向的梯度,进而可以得到这个cell的梯度及其方向,可以使用sobel算子进行梯度计算
  • 根据每个cell中的梯度大小及方向,计算其梯度的直方图,梯度越大,对应梯度方向所在的直方图区域的权值就越大,一般可以设置直方图大小为9X1.
  • 得到每个cell的梯度信息之后,我们希望梯度信息最后不受其光照信息等因素的影响,因此对其进行normalization的操作,但是更好的方法是设置将不同的cell组成一个block,在这其中对其进行normalization,我们假设一个block包含bxby个cell,因此该区域的直方图就是一个9bxbyX1的向量,对每个block按照一个1cell的step进行滑动,我们最终可以得到(W/Cxbx+1)(H/Cyby+1)个直方图向量,将所有的直方图reshape为1维向量,就能得到最终的HOG特征向量。

参考链接

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012526003/article/details/79966607
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

HOG特征-梯度方向直方图

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭