决策树,Adaboost,GBDT,Xgboost,LightGBM等

Bagging方法有放回地采样同数量样本训练每个学习器, 然后再一起集成(简单投票); Boosting方法使用全部样本(可调权重)依次训练每个学习器, 迭代集成(平滑加权)

1 决策树

ID3,C4.5 CART    特征选择,决策树构建,剪枝

2 Adaboost

大多数提升方法都是改变训练数据的概率(权值)分布,针对不同的训练数据分布调用弱学习算法的一系列弱分类器

从而,两个问题需要解答: 
(1)每一轮如何改变训练数据的权值分布? 
adaboost将分类错误的样本权值提高,降低分类正确的样本权值,从而使分类错误的样本得到更大的关注 
(2)如何将弱分类器组合成一个强分类器? 
adaboost采用加权多数表决方法

 

3 GBDT

CART+加法模型(残差,提升)+ 梯度近似残差

4 xgboost

 XGBOOST

XGBOOST同样采用加性模型与前向分布算法,XGBOOST采用的基本模型为回归决策树

3.1 损失函数

训练数据集D={(xi,yi)}(|D|=n,xi∈Rm,yi∈R)D={(xi,yi)}(|D|=n,xi∈Rm,yi∈R),表示样本数量为nn,特征数量为mm,加性模型预测样本xixi 

y^i=ϕ(xi)=∑k=1Kfk(xi),fk∈F(3.1)(3.1)y^i=ϕ(xi)=∑k=1Kfk(xi),fk∈F


其中F={f(x)=ωq(x)}(q:Rm→T,ω∈RT)F={f(x)=ωq(x)}(q:Rm→T,ω∈RT)表示回归树空间,qq表示样本到叶子节点序号的映射,TT表示树中叶子节点的个数,ωω表示叶子节点权重,与分类树不同的是,回归树在每个叶子节点都有一个连续的score。 
XGBBOST的目标损失函数为: 

L(ϕ)=∑i(l(y^i,yi))+∑kΩ(fk)(3.2)(3.2)L(ϕ)=∑i(l(y^i,yi))+∑kΩ(fk)


其中Ω(f)=γT+12λ||ω||2Ω(f)=γT+12λ||ω||2表示正则化项

 

https://blog.csdn.net/yhmabcdef/article/details/75214052

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值