集成学习之AdaBoost算法

AdaBoost是一种集成学习方法,通过结合多个弱分类器形成强分类器。它的工作原理是调整样本权重,使得在训练过程中更多关注被错误分类的样本,从而提高整体分类准确率。与随机森林等Bagging方法不同,AdaBoost采用串行方式训练基分类器,对错误分类的样本赋予更高权重。

前言

写完GBDT就一直想要写一下有关集成学习的内容,也是给自己一个刨根问底的机会,那么就从这篇文章开刀吧,这一章节公式几乎没有,也不会过多的去解读公式的含义,只需要让大家能够理解集成学习的东西。能够将这种算法融入到自己的心中去,还是说希望大家也不要太深究这些公式,有些时候,这些公式只是给算法一个更为合理的解释,理解这个算法背后的原理和应用其实对大部分朋友来说更尤为重要,当然了有能力的朋友看懂公式也是超重要的。

一、Adaboost原理

集成算法是很强大的,就比如很火的xgboost,lightgbm。虽然Adaboost大家并不是很经常使用了,但是我觉得这也是集成学习基础,毕竟是很容易理解的东西,后面我还会写一篇关于xgboost的文章,作为传统推荐系统的结尾。

首先看一下基本原理,还是借用我关注的一位博主讲的谚语来开始讲解:

小学语文课本一篇名为《三个臭皮匠顶个诸葛亮》的文章。文章中写到诸葛亮带兵过江,江水湍急,而且里面多是突出水面的礁石。普通竹筏和船只很难过去,打头阵的船只都被水冲走触礁沉没,诸葛亮一筹莫展,也想不出好办法,入夜来了3个做牛皮活的皮匠献策。告诉诸葛亮买牛,然后把牛从肚皮下整张剥下来,封好切口后让士兵往里吹气,做成牛皮筏子,这样的筏子不怕撞,诸葛亮按此方法尝试并顺利过江。

 这就是“三个臭皮匠顶个诸葛亮”的故事了,为什么先讲这个故事呢? 一是怕一上来就满口官方话语,一顿数学公式的打消学习的兴趣,二是这个故事告诉了我们一个道理: 集思广益,博采众长。 这就是集成的含义。

集成算法通常用两种: 投票选举(bagging)和再学习(boosting)。

投票选举的场景类似把专家召集到一个会议桌前,当做一个决定的时候,让 K 个专家(K 个模型)分别

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值