1.层次
前面介绍的技术都是用于单个物体的,当有多个物体连接在一起时,情况会变复杂。想象一下,一张桌子,有一个桌面还有四个桌脚,如果我们要操作整个桌子,则各个组成部分可能不会按照全体的坐标系来变化。为了解决这个问题,我们引入了层次模型。
该模型就是一颗多叉树,整个桌子是根节点,而各个组成就是其儿子节点,当对父节点操作时,会影响所有的子节点,而对儿子的操作不影响父节点,这样可以对复杂的形体进行操作而不会引起混乱。又是一个用数学解决的软件问题:)
也可以用类c语言表示
{
Table
{
leg1
}
{
leg2
}
}
2.booleans 和 trims
布尔操作:和层次模型不一样,当要把几个物体融合成一个整体时,采用这个方法可以忽视各个子物体的影响。
有三种基本的操作:
(1)addition(union):就是集合中的并集,将两个物体的公共部分合并成新的物体;
(2)subtraction(Difference):将一个物体减去与另一个物体交汇的部分,和直接切去一块不同,这个操作不会产生新的面来补充伤口(不产生新的面);
(3)intersection:集合中的交集。
布尔操作可以直接用于多边形模型,可对于样条模型会产生问题(这里不太理解会产生什么问题??),可以将样条模型都转化为多边形模型,或者使用trim操作(不产生新的面)。
3.基本变形
多边形模型:移动顶点来控制变形;
样条模型:控制control vertics(CV),产生的效果比较圆滑。
前面介绍的技术都是用于单个物体的,当有多个物体连接在一起时,情况会变复杂。想象一下,一张桌子,有一个桌面还有四个桌脚,如果我们要操作整个桌子,则各个组成部分可能不会按照全体的坐标系来变化。为了解决这个问题,我们引入了层次模型。
该模型就是一颗多叉树,整个桌子是根节点,而各个组成就是其儿子节点,当对父节点操作时,会影响所有的子节点,而对儿子的操作不影响父节点,这样可以对复杂的形体进行操作而不会引起混乱。又是一个用数学解决的软件问题:)
也可以用类c语言表示
{
Table
{
leg1
}
{
leg2
}
}
2.booleans 和 trims
布尔操作:和层次模型不一样,当要把几个物体融合成一个整体时,采用这个方法可以忽视各个子物体的影响。
有三种基本的操作:
(1)addition(union):就是集合中的并集,将两个物体的公共部分合并成新的物体;
(2)subtraction(Difference):将一个物体减去与另一个物体交汇的部分,和直接切去一块不同,这个操作不会产生新的面来补充伤口(不产生新的面);
(3)intersection:集合中的交集。
布尔操作可以直接用于多边形模型,可对于样条模型会产生问题(这里不太理解会产生什么问题??),可以将样条模型都转化为多边形模型,或者使用trim操作(不产生新的面)。
3.基本变形
多边形模型:移动顶点来控制变形;
样条模型:控制control vertics(CV),产生的效果比较圆滑。