逻辑回归 实验

1.逻辑回归

1.1 概述

logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。 逻辑回归根据给定的自变量数据集来估计事件的发生概率,由于结果是一个概率,因此因变量的范围在 0 和 1 之间。 例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。

2.算法原理,步骤

2.1 原理

初步思路:找一个线性模型来由X预测Y

z=w^{T}x+b

但是很明显,这样的函数图像是类似一条斜线,难以达到0或1的取值

引入Sigmoid函数(逻辑函数)

g(x)=\frac{1}{1+e^{-x}}

2.2 图像

2.3 步骤

1.寻找一个合适的预测函数,一般是h函数。这个函数就是我们要找分类函数,用来预测输入数据的判断结果。这个过程很重要,需要对数据有一定的了解和分析,知道或猜测函数大概的形式,比如说是线性函数还是非线性函数。

2.构造一个Cost函数(即损失函数),该函数用来表示预测函数(h)与训练数据类别(y)之间的偏差。

3.想办法使得J ( θ )最小并且求得最佳参数。J ( θ ) 函数的值越小,表示预测函数越准确,所以要找到J ( θ )函数的最小值。找函数的最小值有不同的方法,这里使用的是梯度下降法。

3.案例

3.1 代码实现

导入python库

sklearn.datasets:导入数据集

train_test_split:划分训练集和测试集

定义随机种子

通过设定随机数种子,使运行得到的随机结果相同。

使实验结果更加准确

定义sigmoid函数

g(x)=\frac{1}{1+e^{-x}}

定义逻辑回归算法,

初始化参数w,b

y=b+w1x1+w2x2+....+wnxn

定义权重w与偏置b

将y=w*x+b代入sigmoid函数

损失函数

为了衡量预测值与真实值之间的差异,定义损失函数使预测值更加接近真实值

计算梯度

用梯度下降法更新参数,使代价函数最小化

定义预测

为了方便分类,将大于0.5的归为类别1,小于0.5的归为类别0

定义精度

将分类正确的样本除以总样本,得到正确率

导入数据

划分训练集和测试集

训练模型

输入学习率和迭代次数,然后调用fit

打印结果

将结果可视化

结果

3.2 总结

优缺点

1、优点

(1)适合分类场景

(2)计算代价不高,容易理解实现。

(3)不用事先假设数据分布,这样避免了假设分布不准确所带来的问题。

(4)不仅预测出类别,还可以得到近似概率预测。

(5)目标函数任意阶可导。

2、缺点

(1)容易欠拟合,分类精度不高。

(2)数据特征有缺失或者特征空间很大时表现效果并不好。

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值