李沐深度学习引言笔记

本文围绕机器学习展开,介绍了符号含义,如点乘、叉乘、张量等。阐述了机器学习的关键组件,包括数据、模型、目标函数和优化算法。还讲解了专业术语,如样本、特征、标签等。重点概述了监督学习、无监督学习和强化学习等各类机器学习问题。

引言


符号含义

  • 点乘与叉乘
  • 标量、向量、张量

张量(tensor),在机器学习领域指代张量类(MXNet中为ndarray,在PyTorch和TensorFlow中为Tensor)与numpy的ndarray相似,但比numpy多的功能是:支持GPU加速计算。支持自动微分。无

  • 指示函数

参考知乎文章

机器学习的关键组件

  • 用于学习的数据data
  • 转换数据的模型model
  • 衡量模型优劣的目标函数objective function,有时被称为损失函数(loss function),或(cost function)
  • 改进模型的调参优化算法(algorithm)

专业术语

  • 样本(example, sample)= 数据点(data point)= 数据实例(data instance):数据由一个个样本构成
  • 独立同分布(independently and identically distributed, i.i.d.):一般样本会遵循的性质
  • 每个样本由一组称为特征(features),或协变量(covariates)的属性组成
  • 要分析的属性,称为标签(label),或目标(target)
  • 当每个样本的特征类别数量都是相同的时候,其特征向量是固定长度的,这个长度被称为数据的维数(dimensionality)
  • 训练集(training set)与测试集(test dataset)
  • 过拟合(overfitting):一个模型在训练集上表现良好,但不能推广到测试集
  • 深度学习中,大多流行的优化算法通常基于一种基本方法–梯度下降(gradient descent)

各种机器学习问题概览

1.监督学习(supervised learning)

  • 从已知大量数据样本中随机选取一个子集,为每个样本获取真实标签。有时,这些样本已有标签(例如,患者是否在下一年内康复?);有时,这些样本可能需要被人工标记(例如,图像分类)。这些输入和相应的标签一起构成了训练数据集;
  • 选择有监督的学习算法,它将训练数据集作为输入,并输出一个“已完成学习的模型”;
  • 将之前没有见过的样本特征放到这个“已完成学习的模型”中,使用模型的输出作为相应标签的预测。

1.1 回归(regression)
1.2 分类(classification)
1.3 多标签分类(multi‐label classification)

学习预测不相互排斥的类别的问题

1.4 搜索
1.5 推荐系统
1.6 序列学习

模型记住输入的内容。语音识别,翻译,文字转语音等

2、无监督学习(unsupervised learning)

//数据中不含有目标/标签//

2.1 聚类(clustering)问题

没有标签的情况下进行分类

2.2 主成分分析(principal component analysis)问题
2.3 因果关系(causality)和概率图模型(probabilistic graphical models)问题

能否根据经验数据发现特征间关系

2.4 生成对抗性网络(generative adversarial networks)

合成数据的方法,生成器网络通过学习训练数据的分布,生成新的数据。而判别器网络则尝试区分生成器生成的数据和真实的训练数据。在训练过程中,两个网络相互对抗,生成器网络试图欺骗判别器网络,使其无法准确地区分生成的数据和真实的训练数据,而判别器网络则试图正确地识别哪些数据是真实的。通过不断地迭代训练,生成器网络逐渐学习到如何生成更逼真的数据,而判别器网络则逐渐变得更加准确。最终,生成器网络可以生成与训练数据相似的新数据,这些数据可以用于图像生成、视频生成、自然语言处理等领域。

3、强化学习

//与环境互动//

“在强化学习问题中,智能体(agent)在一系列的时间步骤上与环境交互。在每个特定时间点,智能体从环境接收一些观察(observation),并且必须选择一个动作(action),然后通过某种机制(有时称为执行器)将其传输回环境,最后智能体从环境中获得奖励(reward)。此后新一轮循环开始,智能体接收后续观察,并选择后续操作,依此类推。请注意,强化学习的目标是产生一个好的策略(policy)。强化学习智能体选择的“动作”受策略控制,即一个从环境观察映射到行动的功能。”

监督学习问题其实可以转化为强化学习问题。

  • 当环境可被完全观察到时,强化学习问题被称为马尔可夫决策过程(markov decision process)。
  • 当状态不依赖于之前的操作时,我们称该问题为上下文赌博机(contextual bandit problem)。
  • 当没有状态,只有一组最初未知回报的可用动作时,这个问题就是经典的多臂赌博机(multi‐armed bandit problem)
### 深度学习笔记资源汇总 对于希望获取《动手学深度学习》相关笔记的读者来说,存在多种途径可以访问这些资料。课程笔记不仅覆盖了理论讲解还包含了实践操作指南[^3]。 #### PDF 版本笔记 目前官方并没有提供统一整理成PDF版本的笔记文件。不过社区成员基于个人学习过程中制作了一些总结文档,但需要注意的是这类非官方发布的材料版权归属可能存在争议,建议优先考虑通过合法渠道获取学习素材。 #### GitHub 仓库 GitHub上有一个由exacity维护的项目专门用于存放《Deep Learning Book》中文翻译版的内容,虽然这不是直接针对老师的教材,但对于理解深度学习原理同样具有很高的参考价值[^2]: - **链接**: [Deeplearningbook Chinese](https://github.com/exacity/deeplearningbook-chinese) 另外,在[动手学深度学习v2 PyTorch版](https://zh.d2l.ai/)官方网站提供了每章对应的Jupyter Notebook形式的学习资料下载选项,这对于想要跟随教程亲手实验的同学非常有帮助[^4]。 #### 数据处理相关内容 如果特别关注于数据获取方面的话题,则可以从实用机器学习的角度出发了解如何收集、清洗并利用不同类型的机器学习数据集,这部分内容涉及到了诸如公开可用的数据源介绍以及自动化抓取技术等知识点[^5]。 ```python import requests from bs4 import BeautifulSoup def fetch_data(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') return soup.prettify() ``` 此段Python代码展示了简单的网页爬虫实现方式之一,可用于从互联网上提取所需的信息作为后续分析的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值