Proud Merchants(01背包)

Proud Merchants

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 1175 Accepted Submission(s): 489


Problem Description
Recently, iSea went to an ancient country. For such a long time, it was the most wealthy and powerful kingdom in the world. As a result, the people in this country are still very proud even if their nation hasn’t been so wealthy any more.
The merchants were the most typical, each of them only sold exactly one item, the price was Pi, but they would refuse to make a trade with you if your money were less than Qi, and iSea evaluated every item a value Vi.
If he had M units of money, what’s the maximum value iSea could get?


Input
There are several test cases in the input.

Each test case begin with two integers N, M (1 ≤ N ≤ 500, 1 ≤ M ≤ 5000), indicating the items’ number and the initial money.
Then N lines follow, each line contains three numbers Pi, Qi and Vi (1 ≤ Pi ≤ Qi ≤ 100, 1 ≤ Vi ≤ 1000), their meaning is in the description.

The input terminates by end of file marker.


Output
For each test case, output one integer, indicating maximum value iSea could get.


Sample Input
  
  
2 10 10 15 10 5 10 5 3 10 5 10 5 3 5 6 2 7 3

Sample Output
  
  
5 11

Author
iSea @ WHU

题目大意给定n个物品和钱m,每个物品有价格p,限制钱数q,价值v,限制q的意思是你手头的前必须大等于q才能装买这个物品,问最后获得的最大价值。n<=500,m<=5000.


解题思路与顺序有关的01背包。初看之下似乎和普通背包差不多,判容量大于q时才装。但是这会出大问题,如果一个物品p = 5,q = 7,一个物品p = 5,q = 9,如果先算第一个,那么当次只有7,8...m可以进行状态转移,装第二个物品的时候9,10..m进行转移,第二个物品转移就可以借用第一个物品的那些个状态,而第二个物品先转移,第一个再转移则不能。当然,还有价格有关,当限制一样价格不同时顺序就影响结果。一种组合的排序策略--限制又小价格又贵的先选,也就是q-p小的先选。为什么这样呢?A:p1,q1 B: p2,q2,先选A,则至少需要p1+q2的容量,而先选B则至少需要p2+q1,如果p1+q2>p2+q1,那么要选两个的话的就要先选A再选B,公式可换成q1-p1 < q2-p2,就按这样的方法排序最后的顺序就是最优的顺序。

该题要确保P[i]-Q[i]小的先被”挑选“,差值越小使用它的价值越大(做出的牺牲越小).

#include<cstring>
#include<cstdio>
#include<algorithm>
struct things{
 int p,q,v;
}thing[510];
bool cmp(things a,things b){
 return (a.q-a.p)<(b.q-b.p);
}
using namespace std;
int main()
{
    int n,maxv,i,j,dp[5010];
    while(scanf("%d%d",&n,&maxv)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        for(i=0;i<n;i++)
        {
            scanf("%d%d%d",&thing[i].p,&thing[i].q,&thing[i].v);
        }
        sort(thing,thing+n,cmp);
        for(i=0;i<n;i++)
        {
          for(j=maxv;j>=thing[i].q;j--)
           {

             dp[j]=max(dp[j],dp[j-thing[i].p]+thing[i].v);
           }
        }
        printf("%d\n",dp[maxv]);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值