在Windows下用Python搭建Deeplearning平台

本文介绍两种在Windows环境下搭建Python深度学习开发环境的方法:一是使用Eclipse+PyDev+Python,二是使用Python(x,y)工具。前者需要安装一系列科学计算库如Numpy、Theano,并配置G++环境;后者则更为简便,只需安装Theano库。
摘要由CSDN通过智能技术生成
   相信看到这篇文章的人都是,想必百分之九十九的都是要学习DeepLearing,Python无疑是搭建 DeepLearing 开发平台最好的选择,不单单是因为语法简单,使用方便,最重要的是因为他有Numpy、Theano等科学算法函数库;感谢由它们吧!
    首先说明我的是Windows7-64位的系统,其实和32的系统没有差别,要下载的东西和安装的步骤是一样一样的。其次Python已经出到Python3.4.0,Python3.x系列虽然比Python2.x改进了很多很多,但目前所有的开发工具用的都是Python2.7版本,所以本文也用的都是2.7版本;搭建开发环境有两种方法:

1.用Eclipse+插件PyDev+Python
a.安装插件:在eclipse官网下载Eclipse4.3版本,然后再下载插件Pydev:http://pydev.org/download.html
安装步骤不说了;网上可以搜一下;如:Eclipse配置PyDev插件:http://www.cnblogs.com/halfacre/archive/2012/07/22/2603848.html

b.安装Python2.7;
然后主要的是需要安装numpy,scipy,nose,theano等吧,直接在http://www.lfd.uci.edu/~gohlke/pythonlibs/下载,(记得选你安装Python对应的版本);
注意这里要在cmd下,在对应的目录里面进行安装执行指令:pip install 文件名.whl

c.需要配置G++环境;选theano因为他能够在GPU上运行,GPU和CPU运行原理和比较需要自己去google一下(重要知识);配置G++:参考英文:http://www.kineticsystem.org/?q=node/19
我们只看它安装CMAKE前面的两个部分就好了。

然后就去试试吧!

2.使用Python(x,y):这个工具是我把Windows下开发Python的所有工具都用了一遍后,得出最好的选择;

a.下载Pythonxy:https://code.google.com/p/pythonxy/;然后直接一路next安装,选择安装内容时,你可根据自己需要用到的库进行选择安装,我建议是full安装;安装之后桌面会有一个快捷方式(是所有工具中唯一有快捷方式的);打开后点按钮:
在Windows下用Python搭建Deeplearning平台

然后就会启动pyder,之后就会看到我们的工作平台了;很简单;

b.这个工具已经把除了Theano库,其他常用的都已经内嵌完了,所以我们一般只需要安装Theano(这里注意,由于我们装的Pythonxy带的Python2.7.5是32位的,所以我们安装的库也必须是32位的);开始去搭建你环境吧;


参考资料:http://deeplearning.net/software/theano/index.html#
Python Deep Learning Projects: 9 projects demystifying neural network and deep learning models for building intelligent systems By 作者: Matthew Lamons – Rahul Kumar – Abhishek Nagaraja ISBN-10 书号: 1788997093 ISBN-13 书号: 9781788997096 出版日期: 2018-10-31 pages 页数: (670) Deep learning has been gradually revolutionizing every field of artificial intelligence, making application development easier. Python Deep Learning Projects imparts all the knowledge needed to implement complex deep learning projects in the field of computational linguistics and computer vision. Each of these projects is unique, helping you progressively master the subject. You’ll learn how to implement a text classifier system using a recurrent neural network (RNN) model and optimize it to understand the shortcomings you might experience while implementing a simple deep learning system. Similarly, you’ll discover how to develop various projects, including word vector representation, open domain question answering, and building chatbots using seq-to-seq models and language modeling. In addition to this, you’ll cover advanced concepts, such as regularization, gradient clipping, gradient normalization, and bidirectional RNNs, through a series of engaging projects. By the end of this book, you will have gained knowledge to develop your own deep learning systems in a straightforward way and in an efficient way Contents 1: BUILDING DEEP LEARNING ENVIRONMENTS 2: TRAINING NN FOR PREDICTION USING REGRESSION 3: WORD REPRESENTATION USING WORD2VEC 4: BUILDING AN NLP PIPELINE FOR BUILDING CHATBOTS 5: SEQUENCE-TO-SEQUENCE MODELS FOR BUILDING CHATBOTS 6: GENERATIVE LANGUAGE MODEL FOR CONTENT CREATION 7: BUILDING SPEECH RECOGNITION WITH DEEPSPEECH2 8: HANDWRITTEN DIGITS CLASSIFICATION USING CONVNETS 9: OBJECT DETECTION USING OPENCV AND TENSORFLOW 10: BUILDING FACE RECOGNITION USING FACENET 11: AUTOMATED IMAGE CAPTIONING 12: POSE ESTIMATION ON 3D MODELS USING CONVNETS 13: IMAGE TRANSLATION USING GANS FOR STYLE TRANSFER
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值