机器学习
文章平均质量分 90
Fluoriteye
Fluorite Eye's Song
展开
-
PCA主成分分析
PCA是一种常用的降维技术,用于将高维数据转换为低维表示。PCA旨在通过找到数据中最重要的特征来减少数据的维度,同时保留尽可能多的信息。核心思想是将原始数据投影到一个新的特征空间,使得投影后的特征具有最大的方差。方差较大的特征往往包含了数据的重要信息,因此选择这些特征可以更好地表示原始数据。通过计算数据的协方差矩阵,可以得到特征值和特征向量。特征值表示每个特征向量对应的特征的重要程度,特征向量表示特征的方向。选取最大的k个特征值对应的特征向量作为主成分,构成降维后的特征空间。原创 2024-01-01 19:21:21 · 841 阅读 · 0 评论 -
支持向量机
支持向量机(Support Vector Machine,SVM)是一种常用的监督学习算法,广泛应用于分类和回归问题。SVM的核心思想是寻找一个最优的超平面,将不同类别的样本分隔开来,并且使得两侧距离最近的样本点到超平面的距离最大化。支持向量机是一种强大的机器学习算法,具有非线性分类能力、鲁棒性、适用性于高维数据以及强大的泛化能力等优势。然而,在应用SVM时需要注意参数选择和计算复杂度,并且在处理缺失数据时需要进行特殊处理。通过合理的参数选择和优化,SVM可以在许多实际问题中取得良好的分类效果。原创 2023-12-18 17:06:30 · 130 阅读 · 1 评论 -
Logistic回归
在本次实验中,我们使用库在Python环境下演示了Logistic回归的基本应用。通过生成一个简单的二分类数据集,我们训练了一个Logistic回归模型,并将其应用于测试数据。实验结果通过可视化的决策边界清晰地展示了模型如何区分两个类别。这个过程体现了Logistic回归作为一个分类工具的直观性和易于实施性,同时也突出了它在处理简单线性可分数据时的有效性。b。原创 2023-12-04 19:16:06 · 975 阅读 · 0 评论 -
朴素贝叶斯算法
朴素贝叶斯分类是一种基于贝叶斯定理和特征条件独立假设的简单概率分类算法。它的特点包括基于贝叶斯定理进行分类、假设特征条件独立以简化计算过程。朴素贝叶斯分类的步骤包括数据预处理、计算先验概率、计算条件概率和预测分类。它的优点有简单高效、对小规模数据表现良好、鲁棒性强。朴素贝叶斯分类适用于文本分类、推荐系统、医学诊断等领域。总体来说,它是一种简单但实用的分类方法。原创 2023-11-20 21:35:05 · 125 阅读 · 1 评论 -
决策树学习
决策树是一种机器学习方法,用于分类和回归分析。它通过创建一个树状模型来对数据进行划分,并根据特征选择和规则进行预测。决策树的建立过程包括特征选择、数据划分、递归构建子树和剪枝。决策树具有简单直观、可解释性好和对缺失值和异常值不敏感的优点。然而,决策树容易过拟合、对噪声敏感,并且对连续型变量的处理相对困难。为了克服这些限制,可以使用随机森林和梯度提升树等变种算法来提高预测性能。决策树是一种常用的机器学习方法,但在实际应用中需要注意其限制,并结合其他技术进行改进和优化。原创 2023-11-06 19:23:35 · 100 阅读 · 0 评论 -
模型评估:P-R曲线和ROC曲线
P-R曲线和ROC曲线是用于评估二分类模型性能的工具。P-R曲线展示了查准率和召回率之间的关系,而ROC曲线展示了假正率和真正率之间的关系。P-R曲线适用于不平衡数据集,关注平衡查准率和召回率,而ROC曲线适用于评估整体分类性能。两条曲线都能帮助选择合适的分类阈值和比较模型性能。在多类别问题中需要进行适当转换或扩展。选择适合任务需求的评估指标和曲线是重要的。原创 2023-10-23 20:32:33 · 912 阅读 · 0 评论 -
k-近邻算法(kNN算法)
K近邻算法(K-Nearest Neighbors,简称KNN)是一种用于分类和回归的统计方法。KNN 可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一。原创 2023-10-09 20:21:06 · 64 阅读 · 1 评论 -
Visual Studio Code和Anaconda的下载(机器学习编译环境配置)
Anaconda(anaconda下载)就是可以便捷获取包且对包能够进行管理,同时对环境可以统一管理的发行版本。Anaconda包含了conda、Python在内的超过180个科学包及其依赖项。VSCode(全称:Visual Studio Code)是一款由微软开发且跨平台的免费源代码编辑器。该软件支持语法高亮、代码自动补全(又称 IntelliSense)、代码重构、查看定义功能,并且内置了命令行工具和 Git 版本控制系统。原创 2023-09-25 21:44:20 · 333 阅读 · 1 评论