HDU 4388(博弈)

思路:假设任取一堆石子,个数为n。每次操作就是把n变为k和k XOR n(0<k<n)这两堆。我们发现当n=2^i时,就不能再分了。因为n异或上一个小于n的数肯定大于n。那么最后n可以分成t堆,并且这t堆的个数都满足tn = 2^i,tn的二进制中1的个数为1,那么t就等于n的二进制中1的个数。现在考虑把(k XOR n)换为(2*k XOR n),二进制中1的个数奇偶性不变。所以我们就可以统计出n中二进制1的个数为cnt,对于一堆答案就是看(cnt-1)的奇偶性。

    统计出所有的cnt-1记为tot,如果tot为奇数则先手赢,否则后手赢。

#include<cstdio>
using namespace std;
int sg[1010], vis[1010];
int f[20];
int cal(int x){
    int cnt = 0;
    while(x){
        cnt += x & 1;
        x >>= 1;
    }
    return cnt-1;
}
int main(){


    int T, kase = 0;
    scanf("%d", &T);
    while(T--){
        int n;
        scanf("%d", &n);
        int ans = 0;
        for(int i = 0; i < n; ++i){
            int x;
            scanf("%d", &x);
            ans += cal(x);
        }
        printf("Case %d: ", ++kase);
        if(ans & 1) printf("Yes\n");
        else printf("No\n");
    }
}

阅读更多
个人分类: 博弈
上一篇Java结构体排序
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭