伸展树,是一种二叉排序树。它可以保证从空树开始任意连续M次对树的操作最多花费O(MlogN)时间。虽然这种保证并不排除任意一次操作花费O(N)时间的可能,而且这样的界也也不如每次操作最坏情形的界O(logN)那么短,但是实际效果是一样的:不存在坏的输入序列。一般来说,当M次操作的序列总的最坏情形运行时间为O(MF(N))时,我们说它的摊还(amortized)运行时间为O(F(N))。
伸展树相比AVL树不需要额外的平衡因子或者高度等信息,在访问符合一定分布的数据集时性能尤佳,而且实现自顶向下的伸展树相对简单。
一,基本的自底向上伸展树
伸展操作主要是将最近访问的结点通过一系列的旋转置于树的顶端。
在旋转的时候,可以分为三种情况:
1、zig情况。
X是查找路径上我们需要旋转的一个非根节点。
如果X的父节点是根,那么我们用下图所示的方法旋转X到根:
这和一个普通的单旋转相同。
2、zig-zag情况。
在这种情况中,X有一个父节点P和祖父节点G(P的父节点)。X是右子节点,P是左子节点,或者反过来。这个就是双旋转。
先是X绕P左旋转,再接着X绕G右旋转。
如图所示:
3、zig-zig情况。
这和前一个旋转不同。在这种情况中,X和P都是左子节点或右子节点。
先是P绕G右旋转,接着X绕P右旋转。
如图所示:
下面是一个例子,旋转节点c到根上。
二、基本伸展树操作:
1、插入:
当一个节点插入时,伸展操作将执行。因此,新插入的节点在根上。
2、查找:
如果查找成功(找到),那么由于伸展操作,被查找的节点成为树的新根。
如果查找失败(没有),那么在查找遇到NULL之前的那个节点成为新的根。也就是,如果查找的节点在树中,那么,此时根上的节点就是距离这个节点最近的节点。
3、查找最大最小:
查找之后执行伸展。
4、删除最大最小:
a)删除最小:
首先执行查找最小的操作。
这时,要删除的节点就在根上。根据二叉查找树的特点,根没有左子节点。
使用根的右子结点作为新的根,删除旧的包含最小值的根。
b)删除最大:
首先执行查找最大的操作。
删除根,并把被删除的根的左子结点作为新的根。
5、删除:
将要删除的节点移至根。
删除根,剩下两个子树L(左子树)和R(右子树)。
使用DeleteMax查找L的最大节点,此时,L的根没有右子树。
使R成为L的根的右子树。
如下图示:
三、自顶向下的伸展树:
在自底向上的伸展树中,我们需要求一个节点的父节点和祖父节点,因此这种伸展树难以实现。因此,我们可以构建自顶向下的伸展树。
当我们沿着树向下搜索某个节点X的时候,我们将搜索路径上的节点及其子树移走。我们构建两棵临时的树──左树和右树。没有被移走的节点构成的树称作中树。在伸展操作的过程中:
1、当前节点X是中树的根。
2、左树L保存小于X的节点。
3、右树R保存大于X的节点。
开始时候,X是树T的根,左右树L和R都是空的。和前面的自下而上相同,自上而下也分三种情况:
1、zig:
如上图,在搜索到X的时候,所查找的节点比X小,将Y旋转到中树的树根。旋转之后,X及其右子树被移动到右树上。很显然,右树上的节点都大于所要查找的节点。注意X被放置在右树的最小的位置,也就是X及其子树比原先的右树中所有的节点都要小。这是由于越是在路径前面被移动到右树的节点,其值越大。
2、zig-zig:
在这种情况下,所查找的节点在Z的子树中,也就是,所查找的节点比X和Y都小。所以要将X,Y及其右子树都移动到右树中。首先是Y绕X右旋,然后Z绕Y右旋,最后将Z的右子树(此时Z的右子节点为Y)移动到右树中。注意右树中挂载点的位置。
3、zig-zag:
在这种情况中,首先将Y右旋到根。这和Zig的情况是一样的。然后变成上图右边所示的形状。接着,对Z进行左旋,将Y及其左子树移动到左树上。这样,这种情况就被分成了两个Zig情况。这样,在编程的时候就会简化,但是操作的数目增加(相当于两次Zig情况)。
最后,在查找到节点后,将三棵树合并。如图:
将中树的左右子树分别连接到左树的右子树和右树的左子树上。将左右树作为X的左右子树。重新最成了一所查找的节点为根的树。
下面是一个查找节点19的例子:
在例子中,树中并没有节点19,最后,距离节点最近的节点18被旋转到了根作为新的根。节点20也是距离节点19最近的节点,但是节点20没有成为新根,这和节点20在原来树中的位置有关系。
代码:
#include <iostream>
#include <iomanip>
#include <vector>
#include <queue>
using namespace std;
typedef struct SplayTreeNode * SplayTree;
typedef struct SplayTreeNode
{
int data;
SplayTreeNode *lchild,*rchild;
} SplayTreeNode;
void BuildSplayTree(SplayTree *T)
{
int item;
cin>>item;
if(item==-1)
{
*T = NULL;
}
else {
*T = new SplayTreeNode;
(*T)->data = item;
BuildSplayTree(&((*T)->lchild));
BuildSplayTree(&((*T)->rchild));
}
}
SplayTree SingleRotateWithLeft(SplayTree x)
{
/* x has left child y */
SplayTree y;
y = x->lchild;
x->lchild = y->rchild;
y->rchild = x;
return y;
}
SplayTree SingleRotateWithRight(SplayTree x)
{
/* x has right child y */
SplayTree y;
y = x->rchild;
x->rchild = y->lchild;
y->lchild = x;
return y;
}
SplayTree DoubleRotateWithLeft(SplayTree x)
{
/* x has left child x->lchild and also
x->lchild has a right child x->lchild->right*/
x->lchild = SingleRotateWithRight(x->lchild);
return SingleRotateWithLeft(x);
}
SplayTree DoubleRotateWithRight(SplayTree x)
{
/* x has right child x->rchild and also
x->rchild has a left child x->rchild->lchild*/
x->rchild = SingleRotateWithLeft(x->rchild);
return SingleRotateWithRight(x);
}
SplayTree Splay(int key,SplayTree X)
{
/* simple top down splay, not requiring key in the tree X
what it does is as described below */
SplayTreeNode N;
SplayTree left,right;
if (X == NULL)
return X;
N.lchild = N.rchild = NULL;
left = right = &N;
while (key != X->data) {
if (key < X->data)
{
if (X->lchild == NULL)
break;
if( key < X->lchild->data) {
/*小于左支路上连续的两个结点*/
X = SingleRotateWithLeft(X);
}
/*旋转之后看停止条件是否满足*/
if (X->lchild == NULL)
break;
right->lchild = X;
right = X;
X = X->lchild;
}
else {
if ( X->rchild == NULL)
break;
if ( key > X->rchild->data) {
/*大于右支路上连续的两个结点*/
X = SingleRotateWithRight(X);
}
/*旋转后看是否满足停止条件*/
if (X->rchild == NULL)
break;
left->rchild = X;
left = X;
X = X->rchild;
}
}
left->rchild = X->lchild;
right->lchild = X->rchild;
X->lchild = N.rchild;
X->rchild = N.lchild;
return X;
}
bool SplaySearch(int key, SplayTree *T)
{
SplayTree t = *T;
while (t != NULL) {
if (key < t->data)
t = t->lchild;
else if (key > t->data)
t = t->rchild;
else {
*T = Splay(key,*T);
return true;
}
}
return false;
}
SplayTree SplayInsert(int key,SplayTree T)
{
SplayTree t;
t = new SplayTreeNode;
t->data = key;
t->lchild = t->rchild = NULL;
if (T == NULL) {
T = t;
}
else {
T = Splay(key,T);
if (key < T->data) {
t->lchild = T->lchild;
t->rchild = T;
T->lchild = NULL;
T = t;
}
else {
if (T->data <key) {
t->rchild = T->rchild;
t->lchild = T;
T->rchild = NULL;
T = t;
}
else {
delete t;
}
}
}
return T;
}
SplayTree SplayDelete(int key, SplayTree T)
{
SplayTree t;
if (T != NULL) {
T = Splay(key, T);
if (key == T->data) {
if (T->lchild == NULL)
t = T->rchild;
else {
t = T->lchild;
t = Splay(key,t);
t->rchild = T->rchild;
}
delete T;
T = t;
}
}
return T;
}
inline int max(int a,int b)
{
return a>b?a:b;
}
int Height(SplayTree T)
{
if (T == NULL)
return 0;
else
return 1 + max(Height(T->lchild), Height(T->rchild));
}
void MakeMat(SplayTree T,int root_x,int root_y,int step,int **m)
{
int lChildPos,rChildPos;
lChildPos = root_x - step;
rChildPos = root_x + step;
if (T == NULL)
return;
else
{
m[root_y][root_x] = 1;
MakeMat(T->lchild,lChildPos,root_y+1,step>>1,m);
MakeMat(T->rchild,rChildPos,root_y+1,step>>1,m);
}
}
void SplayTreeDisplay(SplayTree T)
{
if(T == NULL)
return;
/* init placehold flags m[h][len] */
int h = Height(T);
int len = (1<<h) - 1;
int row = h;
int **m = new int*[row];
for(int i= 0;i<row;i++){
m[i] = new int[len];
memset(m[i],0,len*sizeof(int));
}
/* get level order traversal sequence */
vector<SplayTree> v;
queue<SplayTree> q;
queue<SplayTree> qt;
q.push(T);
SplayTree pt;
while(!q.empty())
{
pt = q.front();
if (pt->lchild != NULL)
q.push(pt->lchild);
if(pt->rchild != NULL)
q.push(pt->rchild);
v.push_back(pt);
q.pop();
}
/* generate output matrix plus '/' and '\\' m[2*h-1][len] */
MakeMat(T,len>>1,0,len+1>>2,m);
/* generate output */
int cnt = 0;
int width = 1;
for(int i = 0; i < row; i++)
{
for(int j = 0; j < len; j++)
{
if(m[i][j])
{
// if (i & 1)
// cout<<setw(width)<<char(m[i][j]);
// else
// cout<<setw(width)<<char(m[i][j]);
// cout<<setw(width)<<m[i][j];
cout<<(v[cnt])->data;
cnt++;
}
else
cout<<setw(width)<<' ';
}
cout<<endl;
}
}
int main()
{
SplayTree T = NULL;
int i;
//BuildSplayTree(&T);
//SplayTreeDisplay(T);
int a[] = {4,5,3,1,7,2,6};
for(i = 0; i < 6; i++) {
cout<<"Key = "<<a[i]<<" inserting: "<<endl;
T = SplayInsert(a[i],T);
SplayTreeDisplay(T);
cout<<"--------------------------------------------"
"--------------------"<<endl;
}
for(i = 0; i < 6; i++) {
cout<<"Key = "<<a[i]<<" searching: "<<endl;
SplaySearch(a[i],&T);
SplayTreeDisplay(T);
cout<<"--------------------------------------------"
"--------------------"<<endl;
}
for(i = 0; i < 6; i++) {
cout<<"Key = "<<a[i]<<" deleting: "<<endl;
T = SplayDelete(a[i],T);
SplayTreeDisplay(T);
cout<<"--------------------------------------------"
"--------------------"<<endl;
}
cout<<"Key = "<<19<<" deleting: "<<endl;
T = SplayDelete(19,T);
SplayTreeDisplay(T);
cout<<"--------------------------------------------"
"--------------------"<<endl;
}
测试输出:
Key = 4 inserting:
4
----------------------------------------------------------------
Key = 5 inserting:
5
4
----------------------------------------------------------------
Key = 3 inserting:
3
4
5
----------------------------------------------------------------
Key = 1 inserting:
1
3
4
5
----------------------------------------------------------------
Key = 7 inserting:
7
5
3
1 4
----------------------------------------------------------------
Key = 2 inserting:
2
1 5
3 7
4
----------------------------------------------------------------
Key = 4 searching:
4
2 5
1 3 7
----------------------------------------------------------------
Key = 5 searching:
5
4 7
2
1 3
----------------------------------------------------------------
Key = 3 searching:
3
2 4
1 5
7
----------------------------------------------------------------
Key = 1 searching:
1
2
3
4
5
7
----------------------------------------------------------------
Key = 7 searching:
7
2
1 4
3 5
----------------------------------------------------------------
Key = 2 searching:
2
1 7
4
3 5
----------------------------------------------------------------
Key = 4 deleting:
3
2 7
1 5
----------------------------------------------------------------
Key = 5 deleting:
3
2 7
1
----------------------------------------------------------------
Key = 3 deleting:
2
1 7
----------------------------------------------------------------
Key = 1 deleting:
2
7
----------------------------------------------------------------
Key = 7 deleting:
2
----------------------------------------------------------------
Key = 2 deleting:
----------------------------------------------------------------
Key = 19 deleting:
----------------------------------------------------------------
REF:
1,http://www.cnblogs.com/kernel_hcy/archive/2010/03/17/1688360.html
2,数据结构与算法分析--C语言描述 Mark Allen Weiss
3,http://digital.cs.usu.edu/~allan/DS/Notes/Ch22.pdf