一个伸展树的实现

伸展树实现(java语言版本)

一、伸展树的基本概念

伸展树是一种二叉搜索树,伸展树也是一种平衡树,不过伸展树并不像AVL树那样对树的平衡有很严格的要求(左右孩子高度之差不能超过1),伸展树通过一系列的伸展操作,可以保证对伸展树的任意连续M次操作,其时间复杂度不会超过MlogN级别,并且伸展树的实现相较于AVL树也简单了很多,不论是插入还是删除算法

二、伸展树的伸展操作

伸展树之所以能够保证MlogN的界,就是因为伸展树的伸展操作,每一次调用伸展树的search方法查找一个结点的时候,如果存在,那么就需要对该结点进行一系列的伸展操作,经过一系列的伸展操作之后,该结点最终会变成根节点

1. 左右情况的伸展

本质上就是AVL树的右双旋转

在这里插入图片描述

2. 左左情况的伸展

这种情况和AVL树的单右旋转不同,需要先将A进行单向左旋,然后再将B进行单向左旋

在这里插入图片描述

3. 右左情况的伸展

略,情况同1

4. 右右情况的伸展

略,情况同2

三、伸展树的插入

伸展树的插入就是普通BST的插入算法,无差别

四、伸展树的删除

伸展树的删除步骤如下
(1)找到被删除的结点D的左子树DL的最大结点M,然后将M结点伸展到DL的根节点处
(2)然后将D删除,因为M一定没有右孩子,即使被伸展到DL的根节点也不会有右孩子,此时只需要将D的右子树DR挂到M的右孩子上即可

三、伸展树代码实现

package splaytree;

/**
 * 实现伸展树
 *
 * @author 西城风雨楼
 */
public class SplayTree<K extends Comparable<K>, V> {
    private TreeNode<K, V> root;

    /**
     * 向伸展树中插入一个新的结点
     *
     * @param key   关键字
     * @param value 值
     */
    public void insert(K key, V value) {
        TreeNode<K, V> cur = root;
        TreeNode<K, V> pre = null;
        while (cur != null) {
            int cmp = cur.key.compareTo(key);
            if (cmp < 0) {
                pre = cur;
                cur = cur.right;
            } else if (cmp > 0) {
                pre = cur;
                cur = cur.left;
            } else {
                // 如果相等,那么就进行替换
                cur.value = value;
                break;
            }
        }
        TreeNode<K, V> node = new TreeNode<>(key, value);
        node.setParent(pre);
        if (pre == null) {
            // 说明当前插入的结点是根节点
            root = node;
            return;
        }
        // 如果pre不为null,那么说明cur不为null即
        // root不为null,所以pre一定指向的是bst中
        // node需要插入位置的前驱结点
        if (pre.key.compareTo(key) < 0) {
            pre.right = node;
        } else {
            pre.left = node;
        }
    }

    /**
     * 返回先序遍历
     *
     * @return 返回先序遍历序列字符串
     */
    public String preOrder() {
        StringBuilder pre = new StringBuilder();
        if (root == null) {
            return pre.toString();
        }

        TreeNode<K, V> cur = root;
        while (cur != null) {
            if (cur.left != null) {
                TreeNode<K, V> mostRight = cur.left;
                while (mostRight.right != null && mostRight.right != cur) {
                    mostRight = mostRight.right;
                }
                if (mostRight.right == null) {
                    pre.append("{")
                            .append(cur.key)
                            .append(",")
                            .append(cur.value)
                            .append(",")
                            .append(cur.parent == null ? "null" : cur.parent.value)
                            .append("}\t");
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                } else {
                    mostRight.right = null;
                }
            } else {
                pre.append("{")
                        .append(cur.key)
                        .append(",")
                        .append(cur.value)
                        .append(",")
                        .append(cur.parent == null ? "null" : cur.parent.value)
                        .append("}\t");
            }
            cur = cur.right;
        }
        return pre.toString();
    }

    public String inOrder() {
        StringBuilder in = new StringBuilder();
        if (root == null) {
            return in.toString();
        }

        TreeNode<K, V> cur = root;
        while (cur != null) {
            if (cur.left != null) {
                TreeNode<K, V> mostRight = cur.left;
                while (mostRight.right != null && mostRight.right != cur) {
                    mostRight = mostRight.right;
                }

                if (mostRight.right == null) {
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                } else {
                    mostRight.right = null;
                    in.append("{")
                            .append(cur.key)
                            .append(",")
                            .append(cur.value)
                            .append(",")
                            .append(cur.parent == null ? "null" : cur.parent.value)
                            .append("}\t");
                }
            } else {
                in.append("{")
                        .append(cur.key)
                        .append(",")
                        .append(cur.value)
                        .append(",")
                        .append(cur.parent == null ? "null" : cur.parent.value)
                        .append("}\t");
            }
            cur = cur.right;
        }

        return in.toString();
    }

    /**
     * 删除伸展树指定的关键字,基本的删除算法的思想是
     * 首先查找这个被删除的元素,然后这个元素就会变成根元素
     * 然后删除这个根元素,同时查找其左子树的最大值,这个最大值
     * 也会变成根元素,这个根元素一定右子树为空,那么把这个根元素的
     *
     * @param key 关键字
     * @return 返回被删除的关键字对应的值
     */
    public V delete(K key) {
        TreeNode<K, V> node = searchHelper(key);
        if (node == null) {
            return null;
        }
        // 找到node的左孩子的最大值
        TreeNode<K, V> leftMax = findMax(node.left);
        // 将左孩子的最大值伸展到根节点,leftMax一定是没有右孩子的
        // 因为leftMax的伸展百分之百是left-left型,伸展之后是right-right型
        // 后面的伸展只能在这两个型之间跳跃
        splaying(leftMax);
        leftMax.right = node.right;
        node.left = null;
        node.right = null;
        return node.value;
    }

    private TreeNode<K, V> findMax(TreeNode<K, V> root) {
        while (root != null && root.right != null) {
            root = root.right;
        }
        return root;
    }

    /**
     * 单向右旋转
     *
     * @param node 被旋转的结点
     */
    private void singleRightRotate(TreeNode<K, V> node) {
        // 特别注意在旋转过程中更新结点的父亲指针,否则将会导致回溯
        // 过程中产生某些意外情况
        TreeNode<K, V> left = node.left;
        node.left = left.right;
        if (left.right != null) {
            left.right.parent = node;
        }

        left.parent = node.parent;
        if (node.parent == null) {
            // 如果当前旋转的是根节点
            root = left;
        } else if (node == node.parent.left) {
            node.parent.left = left;
        } else {
            node.parent.right = left;
        }

        left.right = node;
        node.parent = left;
    }

    /**
     * 单向左旋转
     *
     * @param node 被旋转的结点
     */
    private void singleLeftRotate(TreeNode<K, V> node) {
        TreeNode<K, V> right = node.right;
        node.right = right.left;
        if (right.left != null) {
            right.left.parent = node;
        }

        right.parent = node.parent;
        if (node.parent == null) {
            root = right;
        } else if (node == node.parent.left) {
            node.parent.left = right;
        } else {
            node.parent.right = right;
        }

        right.left = node;
        node.parent = right;
    }

    /**
     * 双向右旋转
     *
     * @param node 被旋转的结点
     */
    private void doubleRightRotate(TreeNode<K, V> node) {
        singleLeftRotate(node.left);
        singleRightRotate(node);
    }

    /**
     * 双向左旋转
     *
     * @param node 被旋转的结点
     */
    private void doubleLeftRotate(TreeNode<K, V> node) {
        singleRightRotate(node.right);
        singleLeftRotate(node);
    }

    /**
     * 根据关键字查找指定的值,每一次查找都会导致被查找的结点
     * 变成根结点,并且其他结点的位置深度基本上下降一半
     *
     * @param key 关键字
     * @return 返回key对应的值
     */
    public V search(K key) {
        TreeNode<K, V> target = searchHelper(key);
        return target == null ? null : target.value;
    }

    /**
     * 从某个结点开始展开,具体的展开规则是:
     * (1)node.parent == root && node.parent.left == node,
     * 那么将node.parent直接右旋,这样node将会成为根节点
     * (2)node.parent == root && node.parent.right == node,
     * 那么将node.parent直接左旋,这样node将会成为根节点
     * (3)node.parent != root,node.parent == node.parent.left
     * && node == node.parent.right,那么将node.parent.parent双向右旋
     * (4)node.parent != root,node.parent == node.parent.right
     * && node == node.parent.left,那么将node.parent.parent双向左旋
     * (5)node.parent != root,node.parent == node.parent.left
     * && node == node.parent.left,那么将node.parent.parent单向右旋,
     * 然后将node.parent单向右旋
     * (6)node.parent != root,node.parent == node.parent.right
     * && node == node.parent.right,那么将node.parent.parent单向左旋,
     * 然后将node.parent单向左旋
     *
     * @param node 待旋转的结点
     */
    private void splaying(TreeNode<K, V> node) {
        while (node.parent != null) {
            if (node.parent == root) {
                if (node.parent.left == node) {
                    // 情况(1)
                    singleRightRotate(node.parent);
                } else {
                    // 情况(2)
                    singleLeftRotate(node.parent);
                }
            } else if (node.parent == node.parent.parent.left) {
                if (node == node.parent.right) {
                    // 情况(3)
                    doubleRightRotate(node.parent.parent);
                } else {
                    // 情况(5)
                    singleRightRotate(node.parent.parent);
                    singleRightRotate(node.parent);
                }
            } else {
                if (node == node.parent.right) {
                    // 情况(6)
                    singleLeftRotate(node.parent.parent);
                    singleLeftRotate(node.parent);
                } else {
                    // 情况(4)
                    doubleLeftRotate(node.parent.parent);
                }
            }
        }
    }

    /**
     * 搜索SplayTree中具有指定关键字的结点
     *
     * @param key 关键字
     * @return 返回关键字和key相等的结点,如果不存在,返回null
     */
    private TreeNode<K, V> searchHelper(K key) {
        TreeNode<K, V> cur = root;
        while (cur != null) {
            int cmp = cur.key.compareTo(key);
            if (cmp < 0) {
                cur = cur.right;
            } else if (cmp > 0) {
                cur = cur.left;
            } else {
                break;
            }
        }
        // 可能从break跳出,也可能完全没进入while循环
        if (cur != null) {
            splaying(cur);
        }
        return cur;
    }

    /**
     * 伸展树的结点类型
     *
     * @param <K> 关键字类型
     * @param <V> 值类型
     */
    private static class TreeNode<K extends Comparable<K>, V> {
        public K key;
        public V value;
        public TreeNode<K, V> left;
        public TreeNode<K, V> right;
        public TreeNode<K, V> parent;

        public TreeNode(K key, V value) {
            this.key = key;
            this.value = value;
        }

        public void setParent(TreeNode<K, V> parent) {
            this.parent = parent;
        }
    }

    public static void main(String[] args) {
        SplayTree<Integer, Integer> splayTree = new SplayTree<>();
        splayTree.insert(1, 1);
        splayTree.insert(32, 32);
        splayTree.insert(30, 30);
        splayTree.insert(31, 31);
        splayTree.insert(28, 28);
        splayTree.insert(29, 29);
        splayTree.insert(26, 26);
        splayTree.insert(27, 27);
        splayTree.insert(24, 24);
        splayTree.insert(25, 25);
        splayTree.insert(22, 22);
        splayTree.insert(23, 23);
        splayTree.insert(20, 20);
        splayTree.insert(21, 21);
        splayTree.insert(18, 18);
        splayTree.insert(19, 19);
        splayTree.insert(16, 16);
        splayTree.insert(17, 17);
        splayTree.insert(14, 14);
        splayTree.insert(15, 15);
        splayTree.insert(12, 12);
        splayTree.insert(13, 13);
        splayTree.insert(10, 10);
        splayTree.insert(11, 11);
        splayTree.insert(8, 8);
        splayTree.insert(9, 9);
        splayTree.insert(6, 6);
        splayTree.insert(7, 7);
        splayTree.insert(4, 4);
        splayTree.insert(5, 5);
        splayTree.insert(2, 2);
        splayTree.insert(3, 3);
        System.out.println(splayTree.preOrder());
        System.out.println(splayTree.inOrder());
        System.out.println(splayTree.search(2));
        System.out.println(splayTree.search(3));
        System.out.println(splayTree.search(4));
        System.out.println(splayTree.search(5));
        System.out.println(splayTree.search(6));
        System.out.println(splayTree.search(7));
        System.out.println(splayTree.search(8));
        System.out.println(splayTree.search(9));
        System.out.println("访问部分结点后遍历:");
        System.out.println(splayTree.preOrder());
        System.out.println(splayTree.inOrder());
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值