PyTorch - torch.ones_like、torch.zeros_like、 torch.full_like

本文介绍了PyTorch中创建特定数值的张量方法,包括ones_like、zeros_like及full_like函数的应用。通过实例展示了如何根据已有张量的形状创建全1、全0或指定数值填充的新张量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch - torch.ones_like、 torch.zeros_like、 torch.full_like

flyfish

import torch
input = torch.rand(3, 4)
print(input)
# tensor([[0.5840, 0.8260, 0.7539, 0.2138],
#         [0.9743, 0.0964, 0.7610, 0.5746],
#         [0.6247, 0.3334, 0.6949, 0.9065]])

# 与input形状相同、元素全为1
a = torch.ones_like(input)
print(a)
# tensor([[1., 1., 1., 1.],
#         [1., 1., 1., 1.],
#         [1., 1., 1., 1.]])

#与input形状相同、元素全为0
b = torch.zeros_like(input)
print(b)
# tensor([[0., 0., 0., 0.],
#         [0., 0., 0., 0.],
#         [0., 0., 0., 0.]])

#与input形状相同、元素全为3
c = torch.full_like(input,3)
print(c)
# tensor([[3., 3., 3., 3.],
#         [3., 3., 3., 3.],
#         [3., 3., 3., 3.]])

print(torch.zeros(3,2))
# tensor([[0., 0.],
#         [0., 0.],
#         [0., 0.]])

print(torch.ones(3,2))
# tensor([[1., 1.],
#         [1., 1.],
#         [1., 1.]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值