Deep3DFaceReconstruction让一张人脸照片变成三维的真人脸
flyfish
曾经是需要这样的,头上戴设备的,现在用AI可以省点麻烦。
实例1
论文Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set
TensorFlow版本源码
PyTorch版本源码
推荐点击这里下载源码和模型,原网址不带模型的,本文已经提供好了源码和模型的下载地址,这里是PyTorch版本.
链接:https://pan.baidu.com/s/1FuTOeo5kR4ziiAwt1BjxSw
提取码:fb4q
如果直接使用原网站源码,需要到 https://faces.dmi.unibas.ch/ 注册之后,才能下载模型,这里避免了到各个地方下载的劳役之苦
如果不使用本下载地址,需要做以下工作
推理需要准备的模型
两个模型如下放置
Deep3DFaceRecon_pytorch
│
└─── BFM
│
└─── 01_MorphableModel.mat
│
└─── Exp_Pca.bin
|
└─── ...
一个模型如下放置
Deep3DFaceRecon_pytorch
│
└─── checkpoints
│
└─── <model_name>
│
└─── epoch_20.pth
训练需要准备的模型
多个模型如下放置
Deep3DFaceRecon_pytorch
│
└─── checkpoints
│
└─── recog_model
│
└─── ms1mv3_arcface_r50_fp16
|
└─── backbone.pth
一个模型如下放置
Deep3DFaceRecon_pytorch
│
└─── checkpoints
│
└─── init_model
│
└─── resnet50-0676ba61.pth
一个模型如下放置
Deep3DFaceRecon_pytorch
│
└─── checkpoints
│
└─── lm_model
│
└─── 68lm_detector.pb
测试
模型名字懒得起名字就叫model_name
python test.py --name=model_name --epoch=20 --img_folder=./datasets/examples
成功之后如下提示
----------------- Options ---------------
add_image: True
bfm_folder: BFM
bfm_model: BFM_model_front.mat
camera_d: 10.0
center: 112.0
checkpoints_dir: ./checkpoints
dataset_mode: None
ddp_port: 12355
display_per_batch: True
epoch: 20 [default: latest]
eval_batch_nums: inf
focal: 1015.0
gpu_ids: 0
img_folder: ./datasets/examples [default: examples]
init_path: checkpoints/init_model/resnet50-0676ba61.pth
isTrain: False [default: None]
model: facerecon
name: model_name [default: face_recon]
net_recon: resnet50
phase: test
suffix:
use_ddp: False [default: True]
use_last_fc: False
verbose: False
vis_batch_nums: 1
world_size: 1
z_far: 15.0
z_near: 5.0
----------------- End -------------------
model [FaceReconModel] was created
loading the model from ./checkpoints/model_name/epoch_20.pth
0 ./datasets/examples/000002.jpg
create glctx on device cuda:0
1 ./datasets/examples/000006.jpg
2 ./datasets/examples/000007.jpg
3 ./datasets/examples/000031.jpg
...
训练的数据集,网盘不得浪费空间,没放进网盘
Path | Size | Files | Format | Description |
---|---|---|---|---|
ffhq-dataset | 2.56 TB | 210,014 | Main folder | |
├ ffhq-dataset-v2.json | 255 MB | 1 | JSON | Metadata including copyright info, URLs, etc. |
├ images1024x1024 | 89.1 GB | 70,000 | PNG | Aligned and cropped images at 1024×1024 |
├ thumbnails128x128 | 1.95 GB | 70,000 | PNG | Thumbnails at 128×128 |
├ in-the-wild-images | 955 GB | 70,000 | PNG | Original images from Flickr |
├ tfrecords | 273 GB | 9 | tfrecords | Multi-resolution data for StyleGAN and StyleGAN2 |
└ zips | 1.28 TB | 4 | ZIP | Contents of each folder as a ZIP archive. |
实例2
论文 Towards Fast, Accurate and Stable 3D Dense Face Alignment
官网地址 https://github.com/cleardusk/3DDFA_V2
模型和源码下载地址
链接:
链接:https://pan.baidu.com/s/1szv4JIklfxDiDkzeZ2KWow
提取码:arpx
简单的测试命令
python3 demo.py -f examples/inputs/emma.jpg -o 3d
效果图片自己脑补或者打开文件看吧,传上来容易违规。
如果把真人脸迁移到卡通的样子