TensorFlow - 手写数字识别 (卷积神经网络实现)

TensorFlow - 手写数字识别 (卷积神经网络实现)

手写数字识别 (MNIST), 多类分类 (multiclass classification) 问题

flyfish

ReLU
dropout
tf.nn.conv2d

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])


W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))


def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

#权重初始化
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

#第一层卷积
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

x_image = tf.reshape(x, [-1,28,28,1])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

#d第二层卷积
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])      

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)


#全连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)


#输出层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])


#训练和评估模型
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdagradOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess = tf.Session()  
sess.run(tf.global_variables_initializer())   
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(session=sess,feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print ("step %d, training accuracy %g"%(i, train_accuracy))
  train_step.run(session=sess,feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print ("test accuracy %g"%accuracy.eval(session=sess,feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))  

代码解释

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data


 #与之前的softmax版相同的方式读取数据 
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)


#这里的 x 和 y 并不是特定的值,相反,他们都只是一个 占位符 ,可以在TensorFlow运行某一计算时根据该占位符输入具体的值。
#输入图片 x 是一个2维的浮点数张量。这里,分配给它的 shape 为 [None, 784] ,其中 784 是一张展平的MNIST图片的维度。
#None 表示其值大小不定,在这里作为第一个维度值,用以指代batch的大小,意即 x 的数量不定。

#输出类别值 y_ 也是一个2维张量,其中每一行为一个10维的one-hot向量,用于代表对应某一MNIST图片的类别
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
#placeholder可以让TensorFlow能够自动捕捉因数据维度不一致导致的错误。



# W 和 b 都初始化为零向量。 
# W 是一个784x10的矩阵(因为我们有784个特征和10个输出值)
# b 是一个10维的向量(因为我们有10个分类)
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))


#tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的维度,mean是均值,stddev是标准差。
#这个函数产生正态分布,均值和标准差自己设定。
#这是一个截断的产生正态分布的函数意思是产生正态分布的值如果与均值的差值大于两倍的标准差,那就重新生成。
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)


#卷积使用1步长(stride size),0边距(padding size)的模板,保证输出和输入是同一个大小
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')   # strides第0位和第3为一定为1,剩下的是卷积的横向和纵向步长

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],   #参数ksize是要执行取最值的切片在各个维度上的尺寸,四维数组意义为[batch, height, width, channels]
                        strides=[1, 2, 2, 1], padding='SAME')   

#参数strides是取切片的步长,四维数组意义为四个方向的步长,这里height和width方向都为2,
#例如原本8x8的矩阵,用2x2切片去pool,会获得5x5的矩阵输出(SAME模式),有效的减少特征维度。    


#第一层卷积
#现在我们可以开始实现第一层了。它由一个卷积接一个max pooling完成。卷积在每个5x5的patch中算出32个特
#征。卷积的权重张量形状是 [5, 5, 1, 32] ,前两个维度是patch的大小,接着是输入的通道数目,最后是输出的
#通道数目。 而对于每一个输出通道都有一个对应的偏置量。
W_conv1 = weight_variable([5, 5, 1, 32])   #  5,5表示patch的大小,1输入的通道数目(r,g,b,alpha),32表示有多少个神经元(特征)
b_conv1 = bias_variable([32])


#为了用这一层,我们把x变成一个4d向量,其第2、第3维对应图片的宽、高,
#最后一维代表图片的颜色通道数(因为是灰度图所以这里的通道数为1,如果是rgb彩色图,则为3)。
x_image = tf.reshape(x, [-1,28,28,1]) 
#-1代表任何维度,这里是样本数量,计算方法如下:MNIST的图像大小为28*28,由于是黑白的,只有一个in_channel。
#将一组图像矩阵x重建为新的矩阵,该新矩阵的维数为(n,28,28,1),其中-1表示n由实际情况来定。
#例如,x是一组图像的矩阵(假设是50张,大小为56×56),则执行x_image = tf.reshape(x, [-1, 28, 28, 1])
#可以计算n=50×56×56/28/28/1=200。即x_image的维数为(200,28,28,1)
#例如,x是一组图像的矩阵(假设是50张,大小为28×28),则执行x_image = tf.reshape(x, [-1, 28, 28, 1])
#可以计算n=50×28×28/28/28/1=50。即x_image的维数为(50,28,28,1)


#我们把x_image和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max pooling。

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)



#第二层卷积
#为了构建一个更深的网络,我们会把几个类似的层堆叠起来。第二层中,每个5x5的patch会得到64个特征。
W_conv2 = weight_variable([5, 5, 32, 64])  #  这里32是指上一层的输出通道数目就是这一层的输入的通道数目
b_conv2 = bias_variable([64])      

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

#对于我们描述的卷积层,经常在卷积层后面加一个池化层。池化层简单的浓缩卷积层的输出结果并创建一个压缩版本的信息并输出。
#本例子中,我们使用2*2区域的卷积层,通过池化将其压缩成一个点
h_pool2 = max_pool_2x2(h_conv2)


# 输入的是32个14x14的矩阵,权重体现了这层要输出的矩阵个数为64。
# 卷积输出64个12x12的矩阵,因为(14+2−4)/1(当我们对12*12排列应用5*5的窗口,步长为1时,卷积层的输出结果是7*7维度。下一步是对输出的7*7增加一个全连接层,最终结果输入给softmax层。)
# 池化输出64个7x7的矩阵,因为(12+2)/2

#全连接层

#现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。
#我们把池化层输出的张量reshape成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])


h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  #tf.matmul()表示矩阵相乘


#Dropout 
# 为了减少过拟合,我们在输出层之前加入dropout。我们用一个placeholder来代表一个神经元的输出在dropout中保持不变的概率。这样我们可以在训练过程中启用dropout,
# 在测试过程中关闭dropout。 TensorFlow的tf.nn.dropout操作除了可以屏蔽神经元的输出外,还会自动处理神经元输出值的scale。所以用dropout的时候可以不用考虑scale。
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)


#输出层


W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])


#softmax层,就像前面的单层softmax regression一样
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)



#为了进行训练和评估,我们使用与之前简单的单层SoftMax神经网络模型几乎相同的一套代码,只是我们会用更加
#复杂的ADAM优化器来做梯度最速下降,在 feed_dict 中加入额外的参数 keep_prob 来控制dropout比例。然后每10
#0次迭代输出一次日志
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))    



# 使用adam优化器来以0.0001的学习率来进行微调 

train_step = tf.train.AdagradOptimizer(1e-4).minimize(cross_entropy)

# 判断预测标签和实际标签是否匹配 
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

# 启动创建的模型,并初始化变量  
sess = tf.Session()  
sess.run(tf.global_variables_initializer())   
for i in range(20000):
  batch = mnist.train.next_batch(50)    # batch 大小设置为50 
  if i%100 == 0:
    train_accuracy = accuracy.eval(session=sess,feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print ("step %d, training accuracy %g"%(i, train_accuracy))
  train_step.run(session=sess,feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print ("test accuracy %g"%accuracy.eval(session=sess,feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))  
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西笑生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值