- 博客(14)
- 收藏
- 关注
原创 如何使用labelimg制作标签数据集?
在目标检测任务中,学会如何自制标签数据集十分重要,这也是一个十分有用的技能,那本文将介绍如何使用labeling来进行标签数据集的制作,我们开始吧!
2024-01-03 16:08:08 583 1
原创 图解秒懂diffusion module
图像领域大火的深度生成模型Diffusion Model,为了让大家快速了解 Diffusion 原理,这篇文章小鱼通过图解的方式。希望对你有所帮助
2023-12-25 10:22:04 1025 1
原创 【对抗网络】CycleGAN模型讲解和代码实现
cycleGAN适用于非配对的图像到图像转换,cycleGAN解决了需要对数据进行训练的困难。可以理解为一种风格上的转换。
2023-11-18 22:50:12 1153 2
原创 【对抗网络】Pix2pix GAN模型讲解和代码实现
Pix2pix GAN主要用于图像之间的转换,又称图像翻译(Image Translation),Pix2pix GAN 其实本质上是一个CGAN,将图片 x 作为CGAN的条件y,输入到G和D中。G的输入是x(x是需要转换的图片),输出是生成的图片G(x)。D则需要分辨出 {x,G(x)} 和 {x,y}。
2023-11-13 00:08:47 3176 8
原创 【对抗网络】DCGAN模型讲解和代码实现
DCGAN就是将CNN和原始地GAN结合到一起,生成模型和判别模型都运用了深度卷积神经网络的生成对抗网络。DCGAN将CNN和GAN结合,奠定了之后几乎所有GAN的基本网络架构。总之,DCGAN极大地提升了原始GAN训练地稳定性和生成结果质量。
2023-11-12 19:25:49 4759 4
原创 【对抗网络】基础GAN网络模型讲解和代码实现
GAN是一种深度神经网络架构,由一个生成器和一个判别网络组成。生成网络生成“假数据”,并试图欺骗判别网络;判别网络对生成数据进行真伪鉴别,试图正确识别所有“假数据”。在训练迭代的过程中,两个网络持续的进化和对抗,就像两个对弈的人,直到平衡状态(参考纳什均衡),判别网络无法再识别“假数据”,训练结束。
2023-11-12 16:49:41 377 1
原创 【对抗网络】Gan的基本公式详解
本文将对Gan的基本公式进行一个详细的解释,此后的多种对抗网络的形式都是基于本文的基本公式进行一定的演变而来,所以清楚地了解Gan的基本公式,对以后的Gan网络学习,意义深远而重大。
2023-11-05 15:54:46 977 1
原创 【深度学习】识别手写数字项目实战(含GUI界面且准确率高达99%!!!)
识别手写数字项目是我们学习深度学习的基础项目,非常适合刚起步的初学者实践的好项目。此项目采用五层卷积神经网络作为网络模型,准确率高达99%以上。同时此项目还设计了一个GUI界面,能够快速识别现场手写数字,快来试试吧 ~ ~
2023-10-29 00:05:00 2002 6
原创 【机器学习】损失函数的选择总结
选择损失函数是深度学习中的关键决策,因为在不同的项目中,有些损失函数计算的损失梯度下降得快,而有些下降得慢。所以选择损失函数通常取决于任务的性质,例如是回归问题、分类问题、还是其他任务,在后面我们会详细介绍。
2023-10-22 17:47:05 969 1
原创 图像数据增强的几种常用方法总结(神里凌华来给大家示范!!!)
当我们在进行有关目标检测或图像分类时,我们少不了跟图片打交道,在我们整理数据集时你也许会发现有些类别的图片或许达不到一个预期的数量要求,那我们可选的方法就有两种,一种是爬虫,一种则是更为简单的数据增强操作。
2023-10-21 17:12:51 2473 4
原创 基于经典网络架构训练图像分类模型(超详细批注和完整思路!!!)
值得一提的是,我们的这个模型中最后一层已经LogSoftmax()了,所以不能直接用nn.CrossEntropyLoss()来计算了,因为nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合,我们只需要用nn.NLLLoss()即可。通常来说在第一次训练后的基础上再训练完整的一次可以更好地拟合你的数据集,从而提高你的准确率,使模型的效果提升upup~SGD仅使用当前批次的梯度来更新参数,它是一种基于单一梯度估计的方法,因此更新可能会受到噪声的干扰。
2023-10-19 22:02:24 546 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人