前言
吃喝睡是不可能的,唯有学习才能让我的心灵充实,才能让我的灵魂得到解脱升华。事不宜迟,来看看有哪些内容吧。(tips:黄色是史莱姆级,蓝色是哥布林级,红色是大魔王级哦。)
组队学习预告
1.初级算法梳理
设计:苏静、康兵兵
组队学习说明:通过查阅书籍或参考文献、学习视频等,对传统机器学习算法进行梳理
任务路线:线性回归--->逻辑回归--->决策树
组队学习周期:一周
定位人群:有概率论、矩阵运算、求导等基础数学知识;难度系数小
每个任务完成大概所需时间:2-3h
2. Python基础
设计:马晶敏,叶梁
组队学习说明:学习python基础知识,针对python小白的学习之路
任务路线:基础知识-函数-第三方模块-类和对象-基础爬虫
组队学习周期:10天
定位人群:python小白,难度系数低
课程内容:每个任务完成大概所需时间:每天平均花费时间2小时-4小时不等,根据个人学习接受能力强弱有所浮动
3. MySQL
设计:杨皓博,孙涛,杨煜
组队学习说明:一周内快速了解并掌握MySQL的主要内容。通过大量SQL语句的实战练习,可以在简历上写熟练掌握MySQL。(注意:本课程只关注SQL查询语句本身,对数据库的涉及较少。)
任务路线: MySQL软件安装及数据库基础->查询语句->表操作->表联结->MySQL 实战->MySQL 实战-复杂项目
组队学习周期:一周
定位人群:小白,难度系数低
每个任务完成大概所需时间:2-3h
4.高级算法梳理
设计:黑桃,刘广月,于鸿飞
组队学习说明:通过查阅相关文献,对机器学习算法进行梳理
任务路线:RF--->GBDT--->XGB
组队学习周期:一周
定位人群:有概率论、矩阵运算、求导、泰勒展开等基础数学知识;难度系数中
每个任务完成大概所需时间:2-3h
5. 统计学
设计:王佳鑫、许辉
组队学习说明:学习内容涵盖统计学中所有的主要知识,并对其分部分进行梳理总结。
任务路线:根据所学习内容进行(1)统计学基本知识、二项及泊松分布、大数定律、正态分布等内容的总结进行整体的回顾、梳理与完善;(2)中心极限定理、置信区间、 假设检验等内容的总结进行整体的回顾、梳理与完善。
组队学习周期:一周
定位人群:微积分、基本概率知识储备,难度系数中
每个任务完成大概所需时间:2-3h
6. Leetcode
设计:于鸿飞、杨皓博
组队学习说明:Leetcode刷题组队学习,从零开始每周10道算法题,在良好的学习氛围下,培养刷题习惯,学习算法思想。(不限制编程语言)
任务路线:按照LeetCode默认题目顺序每周10道题。
组队学习周期:一周
定位人群:适合有一门语言基础的同学,难度系数中
每个任务完成大概所需时间:2-3h
7.知乎小组
设计:黑桃 ,李严
组队学习说明:负责到知乎回答问题,巩固自身所学的知识,同时提升个人和组织的影响力,小组以“包揽知乎最佳回答”为总目标
任务路线:自己选择较为熟悉领域的相关问题作答
组队学习周期:一周
定位人群:比较熟悉AI某领域,难度系数中
每个任务完成大概所需时间:2-3h
8. 算法梳理进阶(线性回归)
设计:黑桃
组队学习说明:对机器学习算法的概念,原理梳理。用Python语言【手写代码】实现每种算法。以加深对机器学习算法的理解。最后使用Python中相关的包来对实际问题进行数据预处理,分类和回归分析。为开发机器学习相关应用打下必要基础。
任务路线:理论梳理->简单线性回归代码实践->测评函数代码实践->多变量线性回归代码实践
组队学习周期:一周
定位人群:有Python基础,sklearn基础!难度系数中
每个任务完成大概所需时间:2-3h
9.数据竞赛
设计:胡稳,李振强,居居
组队学习说明:12天的时间实现数据预处理(TF-IDF与word2vec)、模型实践(朴素贝叶斯、SVM与LightGBM)以及模型优化的整套流程,一起组队完成数据竞赛。
任务路线:数据初识->数据处理->基本模型->实践模型优化->模型优化
组队学习周期:(12天)
定位人群:能够熟练使用python,难度系数中
每个任务完成大概所需时间:2-3h
10. 爬虫
设计:光城、李方
组队学习说明:
从零基础到能独立完成一个简易的爬虫项目
任务路线:请求→re→beautifulsoup
→lxml→selenium→IP问题→实战小项目
组队学习周期:一周
定位人群:有Python基础。难度系数中。
每个任务完成大概所需时间:2-3h/天
11.数据挖掘项目
设计:范晶晶、李碧涵
组队学习说明:应用机器学习算法,完整地走完一个数据挖掘项目流程
任务路线:数据分析→特征工程→模型构建→模型评估→模型调优→模型融合
组队学习周期:12天
定位人群:有Python基础,sklearn基础。难度系数中。
每个任务完成大概所需时间:2-3h/天
12. 编程
设计:光城 LeoLRH
组队学习说明:利用自己所熟知的编程语言,具有一定基础,讨论在面试中可能出现的数据结构问题,一起学习重温经典数据结构
任务路线:数组->链表->栈->队列->递归->排序->二分查找->哈希表->字符串->二叉树->堆->图->回溯->分治->动态规划
组队学习周期:18天
定位人群:有一门语言基础和算法基础的同学,难度系数高,小白慎入!!!
每个任务完成大概所需时间:2h,晚上统一半个小时进行集体讨论总结打卡。
13.自然语言处理-实践课程
设计:jepson
组队学习说明:学习自然语言处理理论,并且通过对某些数据集的文本分类任务不断优化来进行实践。
任务路线:特征提取—>特征选择—>文本表示—>传统机器学习算法跑模型—>LDA生成新特征—>深度学习算法跑模型
定位人群:有Python基础,TensorFlow基础!难度系数高
组队学习周期:18天
每个任务完成大概所需时间:3-4h
所有队伍将在25号之后陆续开始学习,具体组队在学习群中参与
图片:伊小雪 Datawhale
排版:无 多 李 方