在参加本次组队学习之前,本人一直相对图神经网络有系统的学习,但是由于种种原因未能如愿。近年来,一直关注Datawhale的内容,正好有图神经的组队学习,于是就报名了。经过20多天的艰苦学习,在实验室有诸多的任务的情况下,仍在坚持完成组队学习的各项内容。通过Datawhale的组队学习,收获如下:
(1)对图深度学习有基本的认识,对图论知识、图分类、图预测等有初了解。
(2)熟悉了PyG库的安装和使用,并在colab和linux上完成相关的作业。在完成过程中,遇到诸多的困难,但是在小组成员和助教的帮助下顺利解决问题。
(3)学习GCN和GAT在图神经网络的表征中的应用,掌握了使用PyG自带的数据集和构造数据集的过程。
(4)对超大图的节点表征进行学习,虽然最后由于内存容量的限制和colab的运行时间的限制,程序运行未能达到预期的效果,但是仍然收获良多。
(5)学习了基于图表征学习的图预测任务。
这次组队学习依托Datawhale平台,在陈荣钦、周郴莲、戴治旭和刘洋等的精心组织下完成的。课程内容的学习、实验设计和答疑都做的非常好。通过这次组队学习,对图神经网络有了初步的认识,要想达到学术的目的,还需要认真阅读文献和代码。
组队学习-总结 Taks 08
最新推荐文章于 2022-04-05 08:49:23 发布