组队学习-总结 Taks 08

        在参加本次组队学习之前,本人一直相对图神经网络有系统的学习,但是由于种种原因未能如愿。近年来,一直关注Datawhale的内容,正好有图神经的组队学习,于是就报名了。经过20多天的艰苦学习,在实验室有诸多的任务的情况下,仍在坚持完成组队学习的各项内容。通过Datawhale的组队学习,收获如下:
       (1)对图深度学习有基本的认识,对图论知识、图分类、图预测等有初了解。
       (2)熟悉了PyG库的安装和使用,并在colab和linux上完成相关的作业。在完成过程中,遇到诸多的困难,但是在小组成员和助教的帮助下顺利解决问题。
       (3)学习GCN和GAT在图神经网络的表征中的应用,掌握了使用PyG自带的数据集和构造数据集的过程。
       (4)对超大图的节点表征进行学习,虽然最后由于内存容量的限制和colab的运行时间的限制,程序运行未能达到预期的效果,但是仍然收获良多。
        (5)学习了基于图表征学习的图预测任务。
         这次组队学习依托Datawhale平台,在陈荣钦、周郴莲、戴治旭和刘洋等的精心组织下完成的。课程内容的学习、实验设计和答疑都做的非常好。通过这次组队学习,对图神经网络有了初步的认识,要想达到学术的目的,还需要认真阅读文献和代码。

引用\[1\]和\[3\]中的代码中,deg_inv_sqrt是一个归一化系数,用于归一化邻接节点的节点表征。具体来说,它是通过计算节点的度数的平方根的倒数得到的。在代码中,deg_inv_sqrt的计算方式是通过对节点的度数进行幂运算和倒数运算得到的。在计算过程中,如果度数的倒数为无穷大,则将其设置为0。最后,通过将归一化系数与邻接节点的节点表征相乘,实现了对邻接节点表征的归一化操作。 #### 引用[.reference_title] - *1* [组队学习-图神经网络 Taks 02](https://blog.csdn.net/shellup/article/details/118059766)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [GCNConv源码学习](https://blog.csdn.net/tatadeeyes/article/details/129122343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [图神经网络二:消息传递图神经网络](https://blog.csdn.net/alterxu/article/details/118034359)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值