张量分解(一):基础知识

前段时间在组里分享了张量分解相关的知识,现在想把它整理成一个系列,供有需要的同学阅读。
张量分解系列:
张量分解(一):基础知识
张量分解(二):CP分解
张量分解(三):Tucker分解
张量分解(四):Tensor-train Decomposition
张量分解(五):Tensorizing Neural Network
张量分解(六):TTRNN model for video classification

下文根据Tensor Decompositions and Applications∗ 整理,原文比较长,我主要整理了一些比较常用的,有需要的同学可以直接阅读原文。
我们知道,一维的数组叫向量,二维的叫矩阵,三维及三维以上的就是张量了。
如下图,就是一个三阶张量:
这里写图片描述
以下为一些张量相关的基础知识:
1)张量的范数:所有元素的平方和的平方根(类似于矩阵的F范数)
这里写图片描述
2)张量内积:两个相同大小的张量的内积为它们对应元素的乘积之和
这里写图片描述
3)Rank-one tensors:一种特殊的张量类型,如果一个N阶的张量能以N个向量的外积来表示,那么这就是一个Rank-one tensors,具体如下图:
这里写图片描述
这里写图片描述
4)Diagonal tensors:
这里写图片描述
5)张量乘法:
这里写图片描述
6)Kronecker product:
这里写图片描述
7)Khatri-Rao product:其实就是Kronecker product列元素上的匹配:
这里写图片描述
8)Hadamard product:按元素相乘,因此两个tensor的维度必须相同:
这里写图片描述

以上,便是张量分解领域部分比较常见的知识点,下一篇文章,我将讲解一个常见的张量分解算法:CP decomposition.

参考:tensor decompositions and application

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值