CIKM-2014论文《Latent Aspect Mining via Exploring Sparsity and Intrinsic Information》阅读笔记

权且当做阅读笔记。

 

The goal of this work

1. 发现当前review未知的aspect信息,然后预测用户对于这些aspect的评分(Ratings);

2. 挖掘每个aspect的关键terms(topic modeling过程)。

Aspects: 比Domain小一层的单位,一个Domain下面包含了多个aspects

Aspect sparsity 问题:Review只提到了一些aspects,而不是全部的aspects. 解决的办法:利用Lasso里面的l_{1}-regularizer正则取Means方法来解决sparsity of aspect proportions. 

 

心得

1. 基本可以肯定是在2011年的工作STC(Sparse Topical Coding)的基础上的工作;

2. 作者说要改进Maximum A Posterior(MAP)直接运用在STC上,改成了提出一个新的算法:block coordinate gradient descent (块坐标梯度下降)。

3. 提出两个新的notions: user intrinsic aspect interest和item intrinsic aspect quality,个人预测是两个中间层的分布(可能是motinomial distribution)

 

Model Overview and Description:

1. 一些概念(notion)的区分问题:

(1)user intrinsic aspect interest和LRR模型提出来的aspect weight:

前者不依赖于item,后者依赖于item。例如,一个饮食爱好者,评论任何酒店,都倾向于评论该酒店的饮食,这和item--Hotel没有关系。

(2)item intrinsic aspect quality:

对于某个特定的item,如酒店(Hotel),内在的对于每个aspect的质量评估。例如,对于五星级酒店,那所有五星酒店的quality明显高于其他的hotel(这个就依赖于review本身的star就好了??)

2. SACM(Sparse Aspect Coding Model)的特点

(1)分析了Aspect Sparse的原因并可以用以上两个notions去解决;

(2)Aspect Rating的建模根据高斯分布with the Mean related to item intrinsic aspect quality和用户内在方面兴趣(user intrinsic aspect interest)的方差(variance)。例如,一个用户对某个aspect感兴趣,则他会在各种review中都评论该aspect并给出aspect rating,这些rating都有高低,方差较大。

3. 模型背景--Sparse Topical Coding (STC)

(1) document code:θ_{d}  \theta_{d}\in\mathbb{R}_{+}^{\mathit{K}} ,一个K维向量,表示每个doc在每个topic上的关联强度(associate strength),和传统的概率模型不同,\sum \theta_{d}\neq 1 。

(2) word code: s_{dn} ,一个K维向量,它的第k行component s_{dnk} 表示了文档d中第n个词在topic k上的关联强度(associate strength)。同样地,\sum s_{dnk}\neq 1 。

Notice: 一个word可能assign to多个topic,这一点和传统话题模型不同。

(3) K*N维矩阵\beta \in \mathbb{R}_{+}^{\mathit{K\times N}}:字典。

(4) 联合概率分布:p(\theta _{d},s_{d},\{w_{dn}\}_{n\in I_{d}}\vert \beta)=p(\theta_{d})\sum p(s_{dn}\vert \theta_{d})p(w_{dn}\vert s_{dn},\beta)

(5) 推断方法:MAP(Maximum A Posterior), 公式 \hat{\Omega}_{MAP}=\underset{\Omega }{argmax}p(\Omega \vert \{w_{dn}\}_{d\in \textit{D}}, n\in I_{d})

(6) 

 

4. 模型描述--Sparse Aspect Coding Model

(1) Generative Process: 根据user intrinsic aspect interest t_u和item intrinsic aspect quality q_h,选定既有aspect的子集,用于描述当前review,并决定描述该review每个aspect的文本比例;然后选择一些opionionated words来构成该review。

(2) Aspect Rating(各方面的独立评分)

(3) 根据aspect weight求取该user的评分总和。

(4) document code \theta_d\theta_d=t_{u_d}\circ q_{h_d}。利用Hadamard积计算。

(5) word code s_{dn}:从概率p(s_{dn}\vert \theta_d)抽样,和传统概率模型不同,s{dn} 从超高斯分布中抽取:p(s_{dn}\vert \theta_d) \propto exp(-\gamma\left \| s_{dn}-\theta_d \right \|^2_2-\rho \left \| s_{dn} \right \|_1)

(6) 每篇文档中的word count抽样:泊松分布(Poisson Distribution)p(w_{dn}\vert s_{dn},\beta)=Poiss(w_{dn};s_{dn}^T\beta_{\cdot n})

(7) Aspect weight \eta _d :一篇评论d中,用户对某方面k的权重(for the overall rating):\eta _d = \frac{exp(\theta_{dk})}{\sum _j{exp(\theta_{dj})}}

(8) Aspect rating Y^A_{dk}\sim N(q_{h_dk},\alpha^2t^2_{u_dk}) ,\alpha是高斯分布的方差,代表了用户在评价时的aspect interest

(9) 总体评分(Overall Rating)Y_{d}\sim N (\eta _d^TY^A_d,c^2)c^2是高斯分布的方差,是预设固定值

(10)MAP优化技术--Block Coordinate Gradient Descent(块坐标梯度下降)

  • MAP估计的目标函数:\min f(\boldsymbol{\mathrm{Y,S,T, Q}},\beta, \alpha)+\lambda \left \| \boldsymbol{\mathrm{T}} \right \|_1+\rho \left \| \mathrm{\mathbf{S }}\right \|_1 ,约束条件(s.t. )\mathrm{\mathbf{T}}\geq 0, \mathrm{\mathbf{Q}}\geq 0, \mathrm{\mathbf{S}}\geq 0, \alpha \geq 0, \beta_k \in S^{N-1},\forall k
  • 常用优化方法:BCD(Block Coordinate Descent),STC采用了该方法。 
  • SACM提出了一种新的Block Coordinate Gradient Descent(BCGD),每次迭代先选择块\mathrm{\mathbf{B}} \in \{\mathrm{\mathbf{Y,S, T, Q, \beta, \alpha}}\},然后根据descent direction \mathrm{\mathbf{d}}(\mathrm{\mathbf{x}};\mathrm{\mathbf{B}})更新变量x^{new}=x+\alpha_{\mathrm{\mathbf{B}}}\mathrm{\mathbf{d}}(\mathrm{\mathbf{x}};\mathrm{\mathbf{B}})
  • Descent Direction\mathrm{\mathbf{d}}(\mathrm{\mathbf{x}};\mathrm{\mathbf{B}})\mathrm{\mathbf{d}}(\mathrm{\mathbf{x}};\mathrm{\mathbf{B}})=\arg \min \bigtriangledown f(x)^T\mathrm{\mathbf{d}}+\frac{1}{2}\left \| \mathrm{\mathbf{d}} \right \|^2_2 +r(x+\mathrm{\mathbf{d}})(具体求解过程见原论文)
  • the Aspect Dictionary Block \beta :线性算法

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值