自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(125)
  • 收藏
  • 关注

原创 AI论文速读 | 当大语言模型遇上时间序列:大语言模型能否执行多步时间序列推理与推断

本文研究大语言模型(LLM)在时间序列分析中的表现,提出TSAIA基准评估LLM在多步推理和复杂任务中的能力。基准涵盖预测、诊断、分析和决策四大类33种任务类型,涉及能源、金融等多个领域。实验发现,尽管LLM在简单任务上表现尚可,但在复杂任务(如约束预测、阈值校准、金融指标计算)中普遍失败,尤其在多步推理、数值精度和约束满足方面存在瓶颈。通过对8个SOTA模型的统一评测,揭示了当前LLM的局限性,强调需要开发符号推理、执行反馈等专门方法以提升LLM在时间序列分析中的实用性。代码和数据已开源。

2025-09-21 13:37:01 1090 2

原创 CIKM 2025 | FinCast:用于金融时间序列预测的基础模型

本文提出FinCast,首个专为金融时间序列预测设计的基础模型。针对金融数据的时间非平稳性、多领域多样性和时间分辨率差异等挑战,该模型采用基于混合专家(MoE)的Transformer架构,通过token级稀疏路由实现条件计算。FinCast在包含20亿+时间点的大规模金融数据集上预训练,展现出卓越的零样本预测能力。实验表明,在加密货币、外汇、股票和期货等跨领域测试中,其预测精度显著优于TimesFM、Chronos-T5等现有方法(平均MSE降低20%),且仅需轻量微调即可进一步优化。

2025-09-21 13:30:57 1104

原创 AI论文速读 | Kronos: 金融市场语言基础模型

大规模多市场预训练语料库 数据来源:Kronos的预训练数据集包括来自45个全球交易所的超过120亿条K线记录,涵盖了股票、期货、外汇和加密货币等多种资产类别。这些数据的时间跨度为2010年1月至2024年3月,确保了数据的多样性和广泛性。 数据预处理:为了处理原始K线数据的不规则性和非平稳性,论文采用了对数收益率标准化(Log-Return Normalization)方法,

2025-09-13 14:36:42 1024

原创 AI论文速读 | VisionTS++:基于持续预训练视觉主干网络的跨模态时间序列基础模型

本文提出VisionTS++模型,旨在解决预训练视觉模型迁移到时间序列预测时面临的数据模态、多变量预测和概率预测三大挑战。通过引入基于视觉模型的过滤机制筛选高质量数据、彩色多变量转换方法将时间序列映射为多子图RGB图像,以及多分位数预测技术实现不确定性感知,该模型在持续预训练后展现出强大的跨模态迁移能力。实验表明,VisionTS++在分布内和分布外预测任务中均显著优于现有方法,其中MSE指标提升6%-44%,并在12个概率预测设置中的9个取得最优结果。这一成果为构建通用时间序列基础模型提供了新思路。

2025-09-13 14:32:11 661

原创 IJCAI 2025 | 时间序列(Time Series)论文总结

本文总结了2025 IJCAI上有关时间序列(time series)相关论文,共计26篇。时间序列Topic:预测,异常检测,因果发现,时序分析,LLM应用,多模态等。其中23-26为Survey Track,1为蒙特利尔会场,其余Main Track论文为广州会场。

2025-09-07 14:06:10 1109

原创 IJCAI 2025 | 时空数据(Spatial-temporal)论文总结

本文总结了2025 IJCAI上有关时空数据(spatial-temporal)相关论文,共计23篇。时空预测Topic:预测,异常检测,LLM应用,多模态等。其中1-3为蒙特利尔会场,其余Main Track论文为广州会场。

2025-09-07 14:02:28 940

原创 AI论文速读 | YingLong:基于联合预测框架与延迟链式推理的时序预测基础模型

阿里巴巴提出了一种新型时间序列预测框架 YINGLONG,采用非因果双向注意力机制及掩码token恢复训练方法,通过延迟链式推理(DCoT)和多输入集成方法,有效提升了预测精度和泛化能力,在多个数据集上取得了优异的性能表现。

2025-08-21 16:41:07 1102

原创 AI论文速读 | 多模态能否助力时间序列预测?时序预测中融合文本的边界与条件

针对“文本能否及何时提升时间序列预测”这一悬而未决的问题,作者设计涵盖14个数据集、对齐与提示两大范式的系统基准,发现多模态并非万能:仅当文本提供独有信号、时间序列模型较弱、文本/对齐策略匹配且数据充足时才显著优于单模态,并给出可操作的建模与数据指导。

2025-08-21 15:46:42 767

原创 ECML PKDD 2025 | 时间序列(Time Series)论文总结

本文总结了ECMLPKDD2025有关时间序列(Time Series)相关文章,共计14篇,其中1-11为Research Track,12-14为ADS Track。时间序列Topic:预测,分类,异常检测,生成,可解释性等。如有疏漏,欢迎补充!

2025-08-09 12:59:04 872

原创 ECML PKDD 2025 | 时空数据(Spatial-Temporal)论文总结

本文总结了ECMLPKDD2025有关时空数据(Spatial-Temporal)相关文章,共计10篇,其中1-6为Research Track,7-10为ADS Track。时空数据Topic:地理基础模型,时空预测,城市区域表示学习,空间插值,交通事故分类,天气预报等。如有疏漏,欢迎补充!

2025-08-09 12:49:44 826

原创 KDD 2025 | (2月轮)时间序列(Time Series)论文总结

KDD 2025将在2025年8月3号到7号在加拿大多伦多举行,本文总结了KDD 2025(February Cycle)有关时间序列(Time Series)相关文章,共计35篇,其中1-32为Research Track,33-35为ADS Track。如有疏漏,欢迎补充!时间序列Topic:预测,插补,异常检测,表示学习,因果,大语言模型,测试时适应等

2025-07-27 13:03:24 1312

原创 KDD 2025 | (2月轮)时空数据(Spatial-temporal)论文总结

KDD 2025时空数据研究综述:23篇前沿论文聚焦城市智能与轨迹分析 2025年KDD会议将收录23篇时空数据相关论文(19篇研究赛道+4篇应用赛道),时空数据Topic:时空预测,轨迹表示学习,城市区域表示学习,轨迹生成,物流相关,大语言模型,等。如有疏漏,欢迎补充!

2025-07-27 12:57:15 1159

原创 SIGMOD 2025 | 时空数据(Spatial-temporal)论文总结

本文总结了SIGMOD 2025有关时空数据(spatial-temporal data)的相关论文,主要包含空间关键字查询,最短路查询,地图匹配等内容,如有疏漏,欢迎大家补充。笔者对DB了解浅薄,如有表述不当,欢迎大家指正。

2025-07-20 16:43:41 913

原创 SIGMOD 2025 | 时间序列(Time Series)论文总结

本文总结了SIGMOD 2025有关时间序列的相关论文,主要包含异常检测,清理,聚类,相似度检索,IoTDB等内容,如有疏漏,欢迎大家补充。笔者对DB了解浅薄,如有表述不当,欢迎大家指正。

2025-07-20 16:40:52 1232

原创 ICML 2025 | 时空数据(Spatial-Temporal)论文总结

ICML 2025聚焦时空数据研究,涵盖18篇相关论文,主题包括时空预测、气象模拟、轨迹生成等。

2025-06-22 21:02:44 1558

原创 ICML 2025 | 时间序列(Time Series)论文总结

ICML 2025收录了63篇时间序列相关论文,涵盖预测、分类、异常检测、生成模型、因果发现及大语言模型应用等方向。

2025-06-22 20:54:58 2509

原创 KDD 2025 | (8月轮)时间序列(Time Series)论文总结

KDD 2025将在2025年8月3号到7号在加拿大多伦多举行,本文总结了KDD 2025(August Cycle)有关时间序列(Time Series)相关文章,共计11篇,其中1-10为Research Track,11为ADS Track。如有疏漏,欢迎补充!时间序列Topic:预测,异常检测,测试时适应等。

2025-05-01 20:37:59 1760

原创 KDD 2025 | (8月轮)时空数据(Spatial-temporal)论文总结

KDD 2025将在2025年8月3号到7号在加拿大多伦多举行,本文总结了KDD 2025(August Cycle)有关时空数据(Spatial-Temporal)相关文章,共计17篇,其中1-12为Research Track,13-17为ADS Track。**时空数据Topic:时空预测,轨迹表示学习,轨迹生成,轨迹模拟,信控优化等。如有疏漏,欢迎补充!

2025-05-01 20:33:03 1844

原创 ICDE 2025[Tutorial]| 基于时间序列和时空数据的数据驱动决策

本文提出“数据治理-分析-决策”范式,利用时间序列和时空数据进行数据驱动决策,涵盖数据基础、治理方法、分析特性及决策策略,展望预训练、生成模型与LLMs结合等研究方向。

2025-03-30 18:01:04 1448

原创 AISTATS 2025 | ChronosX:利用外生变量调整预训练时间序列模型

协变量提供了影响时间序列的外部因素的宝贵信息,在许多现实世界的时间序列预测任务中至关重要。例如,在零售业中,协变量可能表示促销或高峰日期(如假期季节),这些日期对需求预测有重大影响。在对时间序列预测进行大型语言模型架构进行预训练方面的最新进展已产生了高度准确的预测器。然而,这些模型中的大多数并不容易使用协变量,因为它们通常特定于某个任务或领域。本文介绍了一种将协变量纳入预训练时间序列预测模型的新方法。

2025-03-30 17:55:07 1171

原创 AI论文速读 | 立场观点:长程时间序列预测中没有冠军

长程时间序列预测的最新进展引入了许多复杂的预测模型,这些模型的表现始终优于以前发布的架构。然而,这种快速发展引发了人们对不一致的基准测试和报告实践的担忧,这可能会削弱这些比较的可靠性。本文的立场强调需要将重点从追求越来越复杂的模型转移到通过严格和标准化的评估方法加强基准测试实践。为了支持主张,首先通过在 14 个数据集上训练 3,500 多个网络,对最流行的基准上表现最佳的模型进行广泛、全面和可重复的评估。

2025-03-18 16:25:10 899

原创 AI论文速读 | AAAI 2025| ST-FiT:使用有限训练数据的归纳时空预测

时空图广泛应用于各种实际应用中。时空图神经网络 (STGNN) 已成为从这些数据中提取有意义见解的强大工具。然而,在实际应用中,大多数节点在训练期间可能不具备任何可用的时间数据。例如,由于疫情的异步性,地理图上大多数城市的疫情动态可能不可用。这种现象与大多数现有时空预测方法的训练要求不符,危及了它们的有效性,从而阻碍了更广泛的部署。在本文中,提出用有限的训练数据制定一种新的归纳预测问题。具体来说,给定一个时空图,目标是学习一个时空预测模型,该模型可以在没有任何可用时间训练数据的情况下轻松推广到这些节点上。

2025-03-18 16:17:02 1317

原创 WWW 2025 | 时空数据(Spatial-Temporal)论文总结

本文总结了WWW 2025有关时空数据(Spatial-Temporal)相关文章,OpenReview上可以看到接收列表。如有疏漏,欢迎大家补充。时空数据Topic:轨迹相似度计算,轨迹生成,交通预测,地理位置嵌入表示,POI推荐等

2025-03-09 20:06:37 1705

原创 WWW 2025 | 时间序列(Time Series)论文总结

本文总结了WWW 2025有关时间序列(Time Series)相关文章,OpenReview上可以看到接收列表。如有疏漏,欢迎大家补充。时间序列Topic:时序预测,异常检测,表示学习,大模型,IOT时序等

2025-03-09 20:04:38 1789

原创 ICLR 2025 | 时间序列(Time Series)论文总结

ICLR 2025将在2025年4月24日到28日于新加坡举行。ICLR 2025共有11,565篇投稿,录取率32.08%。本文总结了2025 ICLR上有关时间序列(time series)相关论文。如有疏漏,欢迎大家补充。:预测,插补,分类,生成,因果分析,异常检测,LLM以及基础模型等内容。

2025-03-05 14:46:21 2906

原创 ICLR 2025 | 时空数据(Spatial-Temporal)论文总结

ICLR 2025将在2025年4月24日到28日于新加坡举行。ICLR 2025共有11,565篇投稿,录取率32.08%。本文总结了2025 ICLR上有关时空数据(Spatial-Temporal)相关论文。如有疏漏,欢迎大家补充。:时空预测(交通,气象),时空动力学等。(ICLR更多的是交通数据以外的物理驱动的深度学习以及AI4Science的时空数据,笔者能力有限,囊括了更为广义的时空数据,没有加以区分。因此,部分内容可能缺乏必要的严谨性。)

2025-03-05 14:44:44 1698

原创 AI论文速读 | 立场观点:利用多模态大模型增强时间序列推理能力

理解时间序列数据对于多种实际应用至关重要。虽然大型语言模型 (LLM) 在时间序列任务中大有可为,但当前的方法通常仅依赖数值数据,而忽略了时间相关信息(例如文本描述、视觉数据和音频信号)的多模态性质。此外,这些方法未充分利用 LLM 的推理能力,将分析限制在表面层面的解释,而不是更深层次的时间和多模态推理。在这篇立场观点论文中,作者们认为多模态 LLM (MLLM) 可以为时间序列分析提供更强大、更灵活的推理,从而增强决策和实际应用。

2025-02-20 16:51:38 1239

原创 KDD25 | 人类移动预测的通用模型

预测人类移动对于城市规划、交通管制和应急响应至关重要。移动行为可分为个体和群体,这些行为由各种移动数据记录,例如个体轨迹和群体流量。作为移动数据的不同模态,个体轨迹和群体流量具有紧密的耦合关系。人群流量源于个体轨迹自下而上的聚合,而人群流量施加的约束塑造了这些个体轨迹。由于个体轨迹和群体流量之间的模态差距,现有的移动预测方法仅限于单一任务。在这项工作中,旨在统一移动预测以突破任务特定模型的局限性。提出了一个通用的人类移动预测模型(名为 UniMob),它可以应用于个体轨迹和群体流量。

2025-02-20 16:45:10 961

原创 AAAI 2025 | 时间序列(Time Seies)论文总结

AAAI 2025将在2025年2月25日到3月4日于美国费城( Philadelphia, Pennsylvania, USA)举行。AAAI 2025共有篇投稿(Main Technical Track),共录取了篇论文,录取率。本文总结了2025 AAAI上有关时间序列(time series)相关论文,共计55篇

2025-01-21 11:19:35 6245

原创 AAAI 2025 | 时空数据(spatial-temporal)论文总结

AAAI 2025将在2025年2月25日到3月4日于美国费城( Philadelphia, Pennsylvania, USA)举行。AAAI 2025共有篇投稿(Main Technical Track),共录取了篇论文,录取率本文总结了2025 AAAI上有关时空数据(spatial-temporal)相关论文。:交通预测,插补,轨迹生成,轨迹表示学习,POI推荐,POI表示学习,车辆调度等。其中1-13为。

2025-01-21 11:13:11 2975

原创 年度系列 | 2024时空数据研究工作总结

2024年就要结束了,对今年在时空数据挖掘领域的工作进行了一次回顾,旨在总结今年时空领域的主要进展。总体而言,和23年总结一样,2024年的时空数据挖掘不仅在传统任务上继续取得进展(这部分不再赘述),而且还涌现出了一些新的研究方向新的数据和更多新的可能。注:作为一个初学者,对于这个领域的理解还不够深入,我的观点可能显得有些浅薄和幼稚。尽管如此,我还是愿意分享在我学习过程中发现的一些有趣的文章和见解。我非常欢迎各位宝贵意见和指导,也请大家不吝批评,帮助我更好地成长和进步。

2025-01-05 20:54:27 1670

原创 WSDM 2025 | 时间序列(time series)论文总结

总结了WSDM 2024有关时间序列(time series)的相关论文,如有疏漏,欢迎大家补充。(没有时空数据相关的论文)**时间序列Topic**:异常检测,表示学习,分类。总计**3**篇。

2025-01-05 20:50:48 1369

原创 ICDM 2024 | 时空数据(Spatial-Temporal)论文总结

本文总结了ICDM 2024有关时空数据(spatial-temporal data)的相关论文,如有疏漏,欢迎大家补充。

2024-12-23 12:33:23 1267

原创 ICDM 2024 | 时间序列(time series)论文总结

ICDM 2024于2024年12月9号-12月12号在阿联酋阿布扎比举行(Abu Dhabi, UAE)本文总结了ICDM 2024有关时间序列(time series)的相关论文,如有疏漏,欢迎大家补充。时间序列Topic:分类,预测,异常检测,基础模型等内容。总计9篇,其中regular4篇,short4篇,Demo 1篇。

2024-12-23 12:23:40 2014 2

原创 ICLR 2025 | 时间序列(Time Series)高分论文总结

ICLR2025已经结束了讨论阶段,进入了meta-review阶段,分数应该不会有太大的变化了,本文总结了其中时间序列(Time Series)高分的论文。如有疏漏,欢迎大家补充。:均分要大于等于6(≥6,即使有3,但是有8或者更高的分拉回来也算):预测,插补,分类,生成,因果分析,异常检测,LLM以及基础模型(还有KAN和Mamba各一篇)等内容。

2024-12-21 21:48:27 6145 1

原创 ICLR 2025 | 时空数据(Spatial-Temporal)高分论文总结

ICLR2025已经结束了讨论阶段,进入了meta-review阶段,分数应该不会有太大的变化了,本文总结了其中**时空数据(Spatial-Temporal)**高分的论文。如有疏漏,欢迎大家补充。:均分要大于等于6(≥6,即使有3,但是有8或者更高的分拉回来也算):时空预测,轨迹生成,LLM以及基础模型等内容

2024-12-21 21:33:09 3231

原创 VLDB 2024 | 时间序列(Time Series)论文总结

VLDB 2024于2024年8月26号-8月30号在中国广州举行。本文总结了有关(time series data)的相关论文,主要包含如有疏漏,欢迎大家补充。时间序列Topic:预测,分类,异常检测,插补,生成,数据管理等。

2024-12-11 00:16:36 1805

原创 VLDB 2024 | 时空数据(Spatial-temporal)论文总结

VLDB 2024于2024年8月26号-8月30号在中国广州举行。本文总结了有关(time series data)的相关论文,主要包含如有疏漏,欢迎大家补充。时空数据Topic:交通预测,插补,轨迹相似度检索,轨迹恢复,轨迹插补,路径规划,最短路查询等。

2024-12-11 00:13:51 1693

转载 TimeMixer++:用于通用预测分析的通用时序特征机器

本文介绍了一种全新的深度模型架构TimeMixer++,在8个时间序列分析任务中全面超越了Transformer等模型,成功实现了通用的时间序列建模与应用。TimeMixer++的创新之处在于将时间序列转化为图像,并在时域与频域、多尺度、多分辨率下进行特征提取,从而提升了模型的表现。TimeMixer++的成功不仅为时序分析领域带来了新的思路,也展示了一种全新的时序理解视角。未来,随着更多优化技术和应用场景的引入,相信TimeMixer++将进一步推动时序预测技术的发展,为各行业带来更大的价值。

2024-11-01 20:04:02 1708

转载 Time-MoE:混合专家的十亿级时间序列基础模型

Time-MoE的成功标志着时序预测领域迈入了一个全新时代。它不仅在性能上全面超越了现有模型,更为构建大规模、高效、通用的时序预测基础模型奠定了一个可行的范式。Time-MoE的发布不仅为学术界开辟了全新的研究方向,也为工业界的多种时序应用场景注入了巨大的潜力。在能源管理、金融预测、电商销量、气象预报等众多关键领域,Time-MoE将成为企业和研究机构的强大工具。仅为学术界开辟了全新的研究方向,也为工业界的多种时序应用场景注入了巨大的潜力。

2024-11-01 20:00:47 1596

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除