Haystack:开发大型语言模型应用、增强检索流程和高级搜索系统的开源框架

Haystack:开发大型语言模型应用、增强检索流程和高级搜索系统的开源框架

Haystack是一个开源框架,用于构建生产就绪的大语言模型(LLM)应用程序、检索增强的生成管道以及智能搜索系统,适用于大规模文档集合。它支持检索增强生成(RAG)、文档搜索、自然语言问题回答和语义文档搜索等功能。
以下内容主要来自其官网,翻译而来,方便查看。

1、Haystack简介

Haystack是一个开源框架,用于构建生产就绪的大型语言模型(LLM)应用程序、检索增强的生成管道以及先进的搜索系统。它允许快速尝试最新的AI模型,同时具有灵活性和易用性。Haystack提供了全面的工具,支持使用LLM开发最先进的AI系统,包括模型托管、文档存储和社区集成。此外,Haystack还提供了组件和管道的概念,帮助构建完全定制的端到端生成AI系统。适用于所有希望构建AI应用程序的人,只需具备基本的Python知识即可使用。Haystack背后有一个充满活力的开源社区,鼓励用户通过GitHub贡献来积极塑造Haystack。更多信息,请访问Haystack官网。

2、使用Haystack进行构建

Haystack为开发使用大型语言模型(LLMs)的最先进的AI系统提供了全面的工具。

  • 使用托管在Hugging Face、OpenAI、Cohere、Mistral等平台上的模型。
  • 使用部署在SageMaker、Bedrock、Azure等上的模型。
  • 利用我们的文档存储:OpenSearch、Pinecone、Weaviate、QDrant等。
  • 不断增长的社区集成生态系统为LLM应用程序的评估、监控、数据摄取以及每一层提供工具。
    在这里插入图片描述

可以构建的一些示例包括:

  • 在您自己的数据源上使用最新检索和生成技术的先进RAG(Retrieval Augmented Generation)。
  • 由尖端生成模型(如GPT-4)驱动的聊天机器人和代理,甚至可以调用外部函数和服务。
  • 在包含混合类型信息(图像、文本、音频和表格)的知识库上进行生成式多模态问答。
  • 从文档中提取信息以填充您的数据库或构建知识图谱。

这仅仅是可以在Haystack中创建的系统类型的一小部分。

3、LLM项目的端到端功能(一站式功能)

成功的LLM项目需要的不仅仅是语言模型。作为一个端到端的框架,Haystack在构建系统的每一步都为您提供帮助:

  • 无缝集成Hugging Face或其他提供商的模型到您的管道中。
  • 整合来自网络任何地方的数据源,用于检索增强。
  • 使用Jinja2模板语言为LLM提示提供高级动态模板。
  • 为各种数据格式和来源提供清理和预处理功能。
  • 与您偏好的文档存储集成:使用Haystack的索引管道保持您的GenAI应用更新,帮助您准备和维护数据。
  • 专门的评估工具,使用不同的指标来评估整个系统或其单个组件。
  • Hayhooks模块,通过HTTP端点提供Haystack管道服务。
  • 可定制的日志系统,支持结构化日志记录和跟踪关联开箱即用。
  • 在执行路径的战略点收集代码检测跨度 和跟踪,已支持Open Telemetry和Datadog。

但不仅如此:元数据过滤、本地运行模型的设备管理,甚至高级RAG技术如假设性文档嵌入(HyDE)。无论您的AI需求是什么,您都有可能在Haystack中找到它。如果没有?我们将一起构建。
在这里插入图片描述

4、构建块

Haystack使用两个主要概念来帮助您构建完全功能化和定制的端到端GenAI系统。

4.1组件

Haystack的核心是其组件构建块,可以执行诸如文档检索、文本生成或创建嵌入等任务。单个组件已经非常强大。它可以管理本地语言模型或通过API与托管模型通信。

虽然Haystack提供了一堆开箱即用的组件,但它还允许您创建自己的自定义组件——就像编写一个Python类一样简单。探索我们的合作伙伴和社区开发的包括自定义组件在内的集成集合,您可以自由使用。

您可以连接组件来构建管道,这是Haystack中LLM应用程序架构的基础。

4.2管道

管道是强大的抽象,允许您定义数据在LLM应用程序中的流动。它们由组件组成。

作为开发者,您可以完全控制如何在管道中排列组件。管道可以分支、合并,甚至可以循环回到另一个组件。您可以编写Haystack管道,它们可以重试、循环执行,甚至可能作为服务连续运行。

管道本质上是图形,甚至是多重图。由于管道的灵活性,具有多个输出的单个组件可以连接到具有多个输入的单个组件,或者连接到多个组件。

为了帮助您开始,Haystack提供了许多不同用例的示例管道:索引、代理聊天、RAG、提取式QA、函数调用、网络搜索等等。

5、是给谁用的?

Haystack 适合所有想要构建人工智能应用程序的人——LLM爱好者和新手。您不需要了解模型在幕后如何工作。您所需要的只是一些 Python 的基本知识,以便立即深入了解。

(待续)
翻译自:https://haystack.deepset.ai/overview/intro

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值