(一)大模型应用落地必杀技之LangChain——LangChain基本介绍

目录

LangChain基本介绍

LangChain的安装与基本示例

LangChain的基本架构


LangChain基本介绍

LangChain 是一个用于开发由大型语言模型(LLMs)驱动的应用程序的框架。

LangChain本身可以通过自身的组件,方便快捷的开发基于大模型的应用,就像SpringBoot框架快速构建Java后端应用一样,LangChain可以理解为是开发大模型应用的基础框架。

LangChain 简化了 LLM 应用程序生命周期的每个阶段:

  • 开发:使用LangChain的开源组件和第三方集成来构建您的应用程序。使用LangGraph构建具有一流流式传输和人工参与支持的状态代理。
  • 生产化:使用LangSmith来检查、监控和评估您的应用程序,以便您可以持续优化并自信地部署。
  • 部署:使用LangGraph平台将您的LangGraph应用程序转换为生产就绪的 API 和助手。

LangChain框架可以一站式的完成开发、生产检查和部署,针对大模型应用的开发用一套LangChain全家桶就可以完成。

 

LangChain 为大型语言模型及相关技术(如嵌入模型和向量存储)实现了一个标准接口,并与数百个提供商集成。

  • LangSmith 是一个用于构建生产级 LLM 应用的平台。它允许你密切监控和评估你的应用,以便你可以快速且自信地发布。
  • LangGraph 是一个低级编排框架,用于构建、管理和部署长时间运行、有状态的Agent。

最底层以LangChain和LangGraph两个框架作为架构,中间与许多组件供应商进行集成,最上层由LangGraph平台进行应用的部署与发布,整个流程通过LangSmith进行监控和评估。

LangChain的安装与基本示例

pip install -qU "langchain[openai]"

通过pip可以快速安装LangChain框架,可以选择多个聊天模型版本进行安装,如:openai,anthropic,google-genai,google-vertexai,aws,groq等

import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
  os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")

from langchain.chat_models import init_chat_model

model = init_chat_model("gpt-4o-mini", model_provider="openai")

环境变量中配置OpenAI的key,初始化一个gpt-mini模型。

model.invoke("Hello, world!")

 通过调用invoke与模型进行交互。

LangChain的基本架构

LangChain 框架由多个开源库组成。

  • langchain-core : 聊天模型和其他组件的基础抽象。
  • 集成包(例如 langchain-openai 、 langchain-anthropic 等):重要的集成已被拆分为由 LangChain 团队和集成开发者共同维护的轻量级包。
  • langchain : 构成应用程序认知架构的链、代理和检索策略。
  • langchain-community : 社区维护的第三方集成。
  • langgraph : 用于将 LangChain 组件组合成具有持久化、流式传输和其他关键功能的可生产应用程序的编排框架。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ALLBLUE2025

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值