题意:给出一棵树,权值均为1,从1号点出发,遇到岔路走每个路的概率相等,不能走回头路,问走路长度的期望。
思路:期望等于每个叶子节点走到的路程*走到这个点的概率,dfs维护长度和概率。
float精度能保留6为,double能保留15位,float和double默认都保留6位。long double貌似和double差不多......
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<cstdlib>
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define ll long long
#define ull unsigned long long
#define mem(a,x) memset((a),(x),sizeof ((a)))//x只能是0或-1或false或true
#define debug(x) cout<<"X: "<<(x)<<endl
#define de cout<<"************"<<endl
#define lowbit(x) ((x)&(-x))
#define lson rt<<1
#define rson rt<<1|1
#define gcd(a,b) __gcd(a,b)
#define lcm(a,b) a*b/(__gcd(a,b))
#define inf 0x3f3f3f3f//1e9+6e7
#define eps 1e-8
#define mod 1e9+7
#define N 1000010
const double pi=acos(-1.0);
using namespace std;
int ver[N],edge[N],head[N],nex[N];
int tot=0;
int v[N];
long double d[N];
int c[N],e[N];
long double ans=0;
void add(int x,int y,int z) //加入有向边(x,y),权值为z
{
ver[++tot]=y,edge[tot]=z;
nex[tot]=head[x],head[x]=tot;
}
void dfs(int x,long double p) //求点x的深度
{
v[x]=1;
long double k=0;
for(int i=head[x];i;i=nex[i])
{
int y=ver[i];
if(v[y]) continue;
else k++;
}
if(k==0)
{ans+=(p*d[x]);return ;}
for(int i=head[x];i;i=nex[i])
{
int y=ver[i];
if(v[y]) continue;
d[y]=d[x]+1;
dfs(y,p/k);
}
}
int main()
{
int n;
cin>>n;
int a,b;
mem(v,0);
mem(nex,0);
mem(d,0);
mem(c,0);
rep(i,0,n-2)
{
cin>>a>>b;
add(a,b,1);
add(b,a,1);
c[a]++;
c[b]++;
}
int q=0;
rep(i,2,n)
if(c[i]==1)
{e[q]=i;q++;}//将叶子节点存到数组e里
dfs(1,1);
//cout<<fixed<<setprecision(15)<<ans;
printf("%.15Lf",ans);//输出long double 型的数据用Lf
return 0;
}
void add(int x,int y,int z) //加入有向边(x,y),权值为z
{
ver[++tot]=y,edge[tot]=z;
nex[tot]=head[x],head[x]=tot;
}
for(int i=head[x];i;i=nex[i])
{
int y=ver[i],z=edge[i];//找到了一条有向边(x,y),权值为z
}
dfs求树的深度:
void dfs(int x)
{
v[x]=1;
for(int i=head[x];i;i=nex[i])
{
int y=ver[i];
if(v[y])
continue;
d[y]=d[x]+1; //从父节点x到节点y递推,计算深度
dfs(y);
}
}