CodeForces - 839C (DFS+概率)
题目链接:http://codeforces.com/contest/839/problem/C
题意:总共有n个城市,有n-1条城市间连通的路,从1点出发,问你当无路可走的时候,此时所有结束的期望值总和。
先弄清楚什么是期望总和:
在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。
期望可以理解为加权平均值,权数是函数的密度。对于离散函数,E(x)=∑f(xi)xi
例如,掷一枚六面骰子的期望值是3.5,计算如下:
1*1/6+2*1/6+3*1/6+4*1/6+5*1/6+6*1/6=3.5
思路:dfs遍历所有点的过程中保存一个路径,和一个概率,当到达叶节点时,ans加等于当前点的长度*概率。
一开始直接求了总长度再除以叶节点的个数,结果wa了,显然不能这样求期望。
注:用cout输出答案精度不够,改成printf("%.20f") 就A了。
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5+10;
int cat[maxn];
vector <int> a[maxn];
double ans;
int n,m;
void dfs( int node, int fa, int lcat, double gai ) // fa父亲节点,lcat长度,gai 概率
{
if ( a[node].size()==1 && node!=1 ) { // 当前点是叶节点
ans += lcat*gai;
return ;
}
int p; // p代表可供选择的路
if ( node==1 ) {
p = a[node].size();
}
else {
p = a[node].size()-1;
}
for ( int i=0; i<a[node].size(); i++ ) {
if ( a[node][i]==fa ) {
continue ;
}
int t = a[node][i];
dfs( t, node, lcat+1, 1.0*gai/p );
}
}
int main()
{
int x,y;
cin >> n ;
for ( int i=0; i<n-1; i++ ) {
cin >> x >> y;
a[x].push_back(y);
a[y].push_back(x);
}
ans = 0;
dfs(1,-1,0,1);
printf("%.20f\n",ans); // 用cout精度不够
return 0;
}