CodeForces - 839C (DFS+概率)

CodeForces - 839C (DFS+概率)

题目链接:http://codeforces.com/contest/839/problem/C

题意:总共有n个城市,有n-1条城市间连通的路,从1点出发,问你当无路可走的时候,此时所有结束的期望值总和。

 

先弄清楚什么是期望总和:

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。

期望可以理解为加权平均值,权数是函数的密度。对于离散函数,E(x)=∑f(xi)xi

例如,掷一枚六面骰子的期望值是3.5,计算如下:

1*1/6+2*1/6+3*1/6+4*1/6+5*1/6+6*1/6=3.5

 

思路:dfs遍历所有点的过程中保存一个路径,和一个概率,当到达叶节点时,ans加等于当前点的长度*概率。

一开始直接求了总长度再除以叶节点的个数,结果wa了,显然不能这样求期望。

注:用cout输出答案精度不够,改成printf("%.20f") 就A了。

 

代码:

#include <bits/stdc++.h>

using namespace std;

const int maxn = 2e5+10;
int cat[maxn];
vector <int> a[maxn];
double ans;
int n,m;

void dfs( int node, int fa, int lcat, double gai ) // fa父亲节点,lcat长度,gai 概率
{
    if ( a[node].size()==1 && node!=1 ) { // 当前点是叶节点
        ans += lcat*gai;
        return ;
    }
    int p; // p代表可供选择的路
    if ( node==1 ) {
        p = a[node].size();
    }
    else {
        p = a[node].size()-1;
    }
    for ( int i=0; i<a[node].size(); i++ ) {
        if ( a[node][i]==fa ) {
            continue ;
        }
        int t = a[node][i];
        dfs( t, node, lcat+1, 1.0*gai/p );
    }
}

int main()
{
    int x,y;
    cin >> n ;
    for ( int i=0; i<n-1; i++ ) {
        cin >> x >> y;
        a[x].push_back(y);
        a[y].push_back(x);
    }
    ans = 0;
    dfs(1,-1,0,1);
    printf("%.20f\n",ans); // 用cout精度不够

    return 0;
}

 

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值