机器学习小组知识点1:均方误差(MSE)

本文介绍了机器学习中的均方误差(MSE)概念,包括SSE(和方差)、MSE(均方差)和RMSE(均方根)。MSE用于评估预测模型的精确度,值越小表示模型拟合度越好。同时,文章回顾了方差、标准差等基本统计概念,并提供了计算公式。
摘要由CSDN通过智能技术生成

均方误差单独扽概念是很简单的,这里只做介绍,更深一步的内容会在后面列出来。

  1. SSE(和方差、误差平方和):The sum of squares due to error
  2. MSE(均方差、方差):Mean squared error
  3. RMSE(均方根、标准差):Root mean squared error

数理统计中均方误差是指参数估计值与参数真值之差平方的期望值,记为MSE。MSE是衡量“平均误差”的一种较方便的方法,MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度。
首先先回顾复习三个概念:
1)方差:方差是在概率论和统计方差衡量随机变量或一组数据的离散程度的度量方式,方差越大,离散度越大。求解方式为,各随机变量与平均值差值的平方和的平均数(先求差,再平方,再平均)

平均数:

M=x1+x2++xnn

方差公式:

s2=(x1M)2+(x1M)2++(xnM)2n

也可以通过以下的方式进行求解方差
D(x)=E(x
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值