均方误差单独扽概念是很简单的,这里只做介绍,更深一步的内容会在后面列出来。
- SSE(和方差、误差平方和):The sum of squares due to error
- MSE(均方差、方差):Mean squared error
- RMSE(均方根、标准差):Root mean squared error
数理统计中均方误差是指参数估计值与参数真值之差平方的期望值,记为MSE。MSE是衡量“平均误差”的一种较方便的方法,MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度。
首先先回顾复习三个概念:
1)方差:方差是在概率论和统计方差衡量随机变量或一组数据的离散程度的度量方式,方差越大,离散度越大。求解方式为,各随机变量与平均值差值的平方和的平均数(先求差,再平方,再平均)
平均数:
M=x1+x2+⋯+xnn
方差公式:
s2=(x1−M)2+(x1−M)2+⋯+(xn−M)2n
也可以通过以下的方式进行求解方差
D(x)=E(x