公式

对数加法

l o g a x + l o g a y = l o g a ( x ⋅ y ) log_ax+log_a y=log_a({x\cdotp y}) logax+logay=loga(xy)

等比数列求和

s n = { n ⋅ a 1    ( q = 1 ) a 1 ⋅ ( 1 − q n ) 1 − q ( q ≠ 1 ) s_n=\begin{cases} n\cdotp a_1\quad\qquad\ \ (q=1)\\ \frac{a_1\cdotp(1-q^n)}{1-q}\qquad(q\neq1) \end{cases} sn={na1  (q=1)1qa1(1qn)(q̸=1)

三角函数
和差角

s i n ( a ± b ) = s i n ( a ) ⋅ c o s ( b ) ± c o s ( a ) ⋅ s i n ( b ) sin(a\pm b)=sin(a)\cdotp cos(b)\pm cos(a)\cdotp sin(b) sin(a±b)=sin(a)cos(b)±cos(a)sin(b)

c o s ( a ± b ) = c o s ( a ) ⋅ c o s ( b ) ∓ s i n ( a ) ⋅ s i n ( b ) cos(a\pm b)=cos(a)\cdotp cos(b)\mp sin(a)\cdotp sin(b) cos(a±b)=cos(a)cos(b)sin(a)sin(b)

t a n ( a ± b ) = t a n ( a ) ± t a n ( b ) 1 ∓ t a n ( a ) ⋅ t a n ( b ) tan(a\pm b)=\frac{tan(a)\pm tan(b)}{1\mp tan(a)\cdotp tan(b)} tan(a±b)=1tan(a)tan(b)tan(a)±tan(b)

和差化积

s i n ( a ) + s i n ( b ) = 2 ⋅ s i n ( a + b 2 ) c o s ( a − b 2 ) sin(a)+sin(b)=2\cdotp sin(\frac{a+b}{2})cos(\frac{a-b}{2}) sin(a)+sin(b)=2sin(2a+b)cos(2ab)

s i n ( a ) − s i n ( b ) = 2 ⋅ c o s ( a + b 2 ) s i n ( a − b 2 ) sin(a)-sin(b)=2\cdotp cos(\frac{a+b}{2})sin(\frac{a-b}{2}) sin(a)sin(b)=2cos(2a+b)sin(2ab)

c o s ( a ) + c o s ( b ) = 2 ⋅ c o s ( a + b 2 ) c o s ( a − b 2 ) cos(a)+cos(b)=2\cdotp cos(\frac{a+b}{2})cos(\frac{a-b}{2}) cos(a)+cos(b)=2cos(2a+b)cos(2ab)

c o s ( a ) − c o s ( b ) = − 2 ⋅ s i n ( a + b 2 ) s i n ( a − b 2 ) cos(a)-cos(b)=-2\cdotp sin(\frac{a+b}{2})sin(\frac{a-b}{2}) cos(a)cos(b)=2sin(2a+b)sin(2ab)

t a n ( a ) ± t a n ( b ) = s i n ( a ± b ) c o s ( a ) c o s ( b ) tan(a)\pm tan(b)=\frac{sin(a\pm b)}{cos(a)cos(b)} tan(a)±tan(b)=cos(a)cos(b)sin(a±b)

积化和差

s i n ( a ) c o s ( b ) = 1 2 ( s i n ( a + b ) + s i n ( a − b ) ) sin(a)cos(b)=\frac{1}{2}\big(sin(a+b)+sin(a-b)\big) sin(a)cos(b)=21(sin(a+b)+sin(ab))

c o s ( a ) s i n ( b ) = 1 2 ( s i n ( a + b ) − s i n ( a − b ) ) cos(a)sin(b)=\frac{1}{2}\big(sin(a+b)-sin(a-b)\big) cos(a)sin(b)=21(sin(a+b)sin(ab))

c o s ( a ) c o s ( b ) = 1 2 ( c o s ( a + b ) + c o s ( a − b ) ) cos(a)cos(b)=\frac{1}{2}\big(cos(a+b)+cos(a-b)\big) cos(a)cos(b)=21(cos(a+b)+cos(ab))

s i n ( a ) s i n ( b ) = − 1 2 ( c o s ( a + b ) − c o s ( a − b ) ) sin(a)sin(b)=-\frac{1}{2}\big(cos(a+b)-cos(a-b)\big) sin(a)sin(b)=21(cos(a+b)cos(ab))

常见数列求和

∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6} i=1ni2=6n(n+1)(2n+1)

∑ i = 1 n ( 2 i − 1 ) 2 = n ( 4 n 2 − 1 ) 3 \sum\limits_{i=1}^{n}(2i-1)^2=\frac{n(4n^2-1)}{3} i=1n(2i1)2=3n(4n21)

∑ i = 1 n i 3 = n 2 ( n + 1 ) 2 4 \sum\limits_{i=1}^{n}i^3=\frac{n^2(n+1)^2}{4} i=1ni3=4n2(n+1)2

∑ i = 1 n ( 2 i − 1 ) 3 = n 2 ( 2 n 2 − 1 ) \sum\limits_{i=1}^{n}(2i-1)^3=n^2(2n^2-1) i=1n(2i1)3=n2(2n21)

∑ i = 1 n n ( n + 1 ) = n ( n + 1 ) ( n + 2 ) 3 \sum\limits_{i=1}^{n}n(n+1)=\frac{n(n+1)(n+2)}{3} i=1nn(n+1)=3n(n+1)(n+2)

本源勾股数

a = 2 ⋅ n + 1 ( n ≥ 1 ) a=2\cdotp n+1\quad(n\ge1) a=2n+1(n1)

**那么: ** { b = 2 ⋅ n 2 + 2 ⋅ n c = 2 ⋅ n 2 + 2 ⋅ n + 1 \begin{cases} b=2\cdotp n^2+2\cdotp n\\ c=2\cdotp n^2+2\cdotp n+1 \end{cases} {b=2n2+2nc=2n2+2n+1

a = 2 ⋅ n ( n ≥ 2 ) a=2\cdotp n\quad(n\ge2) a=2n(n2)

那么: { b = n 2 − 1 c = n 2 + 1 \begin{cases} b=n^2-1\\ c=n^2+1\\ \end{cases} {b=n21c=n2+1

均值不等式

调和平均 H n = n ∑ i = 1 n 1 x i H_n=\frac{n}{\sum\limits_{i=1}^n\frac{1}{x_i}} Hn=i=1nxi1n

几何平均 G n = ∏ i = 1 n x i n G_n=\sqrt[n] {\prod\limits_{i=1}^n x_i} Gn=ni=1nxi

算术平均 A n = ∑ i = 1 n x i n A_n=\frac{\sum\limits_{i=1}^n x_i}{n} An=ni=1nxi

平方平均 Q n = ∑ i = 1 n x i 2 n Q_n=\sqrt{\frac{\sum\limits_{i=1}^n x_i^2}{n}} Qn=ni=1nxi2

那么: H n ≤ G n ≤ A n ≤ Q n H_n\le G_n\le A_n \le Q_n HnGnAnQn

错排

D n = n ! ⋅ ∑ i = 0 n ( − 1 ) i i ! = ⌊ n ! e + 0.5 ⌋ D_n=n!\cdot\sum\limits_{i=0}^n\frac{(-1)^i}{i!}=\Big\lfloor \frac{n!}{e}+0.5\Big\rfloor Dn=n!i=0ni!(1)i=en!+0.5

D n = ( n − 1 ) ⋅ ( D n − 1 + D n − 2 ) D_n=(n-1)\cdotp \big(D_{n-1}+D_{n-2}\big) Dn=(n1)(Dn1+Dn2)

D 1 = 0 D 2 = 1 D_{1}=0\quad D_2=1 D1=0D2=1

斯特林公式

n ! ≈ 2 π n ( n e ) n n!\approx \sqrt{2\pi n}(\frac{n}{e})^n n!2πn (en)n

矩阵树定理

a [ x ] [ y ] = { d e g ( x ) x = y − 1    x ≠ y ⋂ x 与 y 相 邻 0   其 他 a[x][y]= \begin{cases} deg(x)\qquad x=y\\ -1\qquad\quad\ \ x\neq y \bigcap x与y相邻\\ 0\qquad\qquad\ 其他 \end{cases} a[x][y]=deg(x)x=y1  x̸=yxy0 

基姆拉尔森计算公式

w e e k = ( d a y + 2 m o n t h + 3 ( m o n t h + 1 ) 5 + y e a r + y e a r 4 − y e a r 100 + y e a r 400 ) % 7 + 1 week=(day+2month+\frac{3(month+1)}{5}+year+\frac{year}{4}-\frac{year}{100}+\frac{year}{400})\%7+1 week=(day+2month+53(month+1)+year+4year100year+400year)%7+1

1, 2月当作上一年的13, 14月

曲线区域分割

n n n条 直线 最多能把平面分成 1 2 n ( n − 1 ) + 1 \frac{1}{2}n(n-1)+1 21n(n1)+1 部分

n n n个 三角形 最多能把平面分成 3 n 2 − 3 n + 2 3n^2-3n+2 3n23n+2 部分

n n n个 四边形 最多能把平面分成 2 ⋅ ( 3 − 2 n ) 2 2\cdotp(3-2n)^2 2(32n)2 部分

n n n个 圆 最多能把平面分成 n 2 − n + 2 n^2-n+2 n2n+2 部分

n n n个 椭圆 最多能把平面分成 2 ( n 2 − n + 1 ) 2(n^2-n+1) 2(n2n+1) 部分

n n n d − 1 d-1 d1维超平面 最多能把 d d d维空间分成 ∑ i = 0 d C n i \sum\limits_{i=0}^dC_{n}^i i=0dCni

平面图欧拉公式

顶点数 − - 边数 + + +面数 = 2 =2 =2

皮克公式

面积 = = =内部点个数 + 1 2 +\frac{1}{2} +21边界上点个数 − 1 -1 1

莫比乌斯反演

{ f ( n ) = ∑ d ∣ n g ( d ) g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) \begin{cases} f(n)=\sum\limits_{d|n}g(d)\\ g(n)=\sum\limits_{d|n}\mu(d)f(\frac{n}{d}) \end{cases} f(n)=dng(d)g(n)=dnμ(d)f(dn)

{ f ( n ) = ∑ n ∣ d g ( d ) g ( n ) = ∑ n ∣ d μ ( d n ) f ( d ) \begin{cases} f(n)=\sum\limits_{n|d}g(d)\\g(n)=\sum\limits_{n|d}\mu(\frac{d}{n})f(d) \end{cases} f(n)=ndg(d)g(n)=ndμ(nd)f(d)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值