概率论与数理统计(湖南大学教材《大学数学4(第三版)》)笔记(一)

第一章:随机事件及其概率


第一节|随机事件及其运算

随机试验
  • 对随机现象所进行的观察、实验或试验等称为随机试验,记为 E E E
  • 特点
    • 在相同条件下可以重复进行
    • 试验的结果不止一个且所有可能的结果事先已知
    • 每次试验之前,无法预料哪个结果会出现
  • 随机试验中每一个基本的可能结果称为一个样本点,记为 ω \omega ω,一个随机试验的全体样本点构成的集合称为该随机试验的样本空间,记为 Ω \Omega Ω
随机事件
  • 随机试验中可能出现也可能不出现的结果称为一个随机事件,常用英文大写字母 A A A B B B ⋯ \cdots 表示

  • 每一个样本点的单点集也是一个随机事件,称为基本事件

  • 必然事件用 Ω \Omega Ω表示,不可能事件用 ∅ \emptyset 表示

    • 必然事件与不可能事件本质上并没有不确定性,但是作为极端情形,把它们看作随机事件
事件的关系和运算
  • 如果事件 A A A发生必然导致事件 B B B发生,则称事件 B B B包含事件 A A A,或称 A A A B B B的子事件,记为 A ⊆ B A \subseteq B AB B ⊇ A B \supseteq A BA

  • 如果 A ⊆ B A \subseteq B AB B ⊆ A B \subseteq A BA则称 A A A B B B相等,记为 A = B A = B A=B

  • A 1 ∪ A 2 ∪ ⋯ ∪ A n A_{1} \cup A_{2} \cup \cdots \cup A_{n} A1A2An记为 ⋃ i = 1 n A i \bigcup\limits_{i = 1}^{n}{A_{i}} i=1nAi,可列多个事件 A 1 A_{1} A1 A 2 A_{2} A2 ⋯ \cdots A n A_{n} An ⋯ \cdots 的和记为 ⋃ i = 1 ∞ A i \bigcup\limits_{i = 1}^{\infty}{A_{i}} i=1Ai

  • A B = ∅ AB = \emptyset AB=则称事件 A A A B B B是互不相容事件(互斥事件)

  • A ∪ B = Ω A \cup B = \Omega AB=Ω A B = ∅ AB = \emptyset AB=则称 B B B A A A的对立事件(逆事件,补事件),记为 B = A ˉ B = \bar{A} B=Aˉ

  • A A A发生而 B B B不发生的事件,称为事件 A A A B B B的差,记为 A − B A - B AB,即 A − B = {   ω ∈ Ω ∣ ω ∈ A 且 ω ∉ B   } A - B = \set{\omega \in \Omega | \omega \in A 且 \omega \notin B} AB={ ωΩωAω/B}

    • A − B = A B ˉ A - B = A \bar{B} AB=ABˉ
例题 1 1 1
  • 问题:设 A A A B B B C C C是三个事件,试用 A A A B B B C C C的运算关系表示下列事件

    • 1 1 1 M 1 M_{1} M1 A A A B B B C C C中至少有两个不发生
    • 2 2 2 M 2 M_{2} M2 A A A B B B C C C中至少有一个发生
  • 解答

    • 1 1 1 M 1 = A ˉ B ˉ ∪ B ˉ C ˉ ∪ C ˉ A ˉ M_{1} = \bar{A} \bar{B} \cup \bar{B} \bar{C} \cup \bar{C} \bar{A} M1=AˉBˉBˉCˉCˉAˉ

    • 2 2 2 M 2 = A ˉ B ˉ C ˉ ‾ = A ∪ B ∪ C M_{2} = \overline{\bar{A} \bar{B} \bar{C}} = A \cup B \cup C M2=AˉBˉCˉ=ABC


第二节|概率及其运算性质

古典概型
  • 概率论早期研究的是具有下列特点的一类随机现象
    • 试验的可能结果(即样本点)为有限个
    • 每个样本点发生的可能性都是一样的
  • 一般地,若样本空间 Ω \Omega Ω包含 n n n个样本点,而对任意事件 A A A A A A包含了 k k k个样本点,则定义比值 k n \cfrac{k}{n} nk为事件 A A A的概率
例题 1 1 1
  • 问题:从 5 5 5双不同的鞋中任取 4 4 4只,求此 4 4 4只鞋中至少有两只配成一双的概率
  • 解答
    • 一种情形为恰有两只鞋配成一双,另一种情形为 4 4 4只鞋配成了两双
    • P ( A ) = C 5 1 C 2 2 C 4 2 C 2 1 C 2 1 + C 5 2 C 2 2 C 2 2 C 10 4 = 13 21 P(A) = \cfrac{C_{5}^{1} C_{2}^{2} C_{4}^{2} C_{2}^{1} C_{2}^{1} + C_{5}^{2} C_{2}^{2} C_{2}^{2}}{C_{10}^{4}} = \cfrac{13}{21} P(A)=C104C51C22C42C21C21+C52C22C22=2113
例题 2 2 2
  • 问题:袋中有 a a a个黑球, b b b个白球,现在把球随机地一个一个摸出来,求第 k k k次摸出的是黑球的概率( 1 ≤ k ≤ a + b 1 \leq k \leq a + b 1ka+b
  • 解答
    • a + b a + b a+b个球视为有区别,把摸出的球依次排列在 a + b a + b a+b个位置上,则样本点总数为 ( a + b ) ! (a + b)! (a+b)!
    • k k k个位置为黑球有 a a a种放法,而其他 a + b − 1 a + b - 1 a+b1个位置上相当于 a + b − 1 a + b - 1 a+b1个球进行全排列,有 ( a + b − 1 ) ! (a + b - 1)! (a+b1)!种放法
    • P = a ( a + b − 1 ) ! ( a + b ) ! = a a + b P = \cfrac{a (a + b - 1)!}{(a + b)!} = \cfrac{a}{a + b} P=(a+b)!a(a+b1)!=a+ba
  • 摸出黑球的概率与摸球次序数 k k k无关,同样,在抽签活动中,中签的概率与抽签的先后次序无关
几何概型
  • 古典概型保留样本点的等可能性,将样本点的个数推广到无限多个,这类概率问题则一般需要通过几何方法来解决
例题 3 3 3
  • 问题:平面上画有等距离的平行线,平行线的距离均为 a ( a > 0 ) a (a > 0) a(a>0),若向该平面上投掷一枚长为 l ( l < a ) l (l < a) l(l<a)的针,试求针与平行线相交的概率

  • 解答

    • x x x表示针的中点与最近一条平行线的距离,又以 φ \varphi φ表示针与直线间的交角
    • 显然有 Ω = {   ( x , φ ) ∣ 0 ≤ x ≤ a 2 , 0 ≤ φ ≤ π   } \Omega = \set{(x , \varphi) | 0 \leq x \leq \cfrac{a}{2} , 0 \leq \varphi \leq \pi} Ω={ (x,φ)0x2a,0φπ}
    • A A A表示“针与平行线相交”这一事件,则有 A = {   ( x , φ ) ∣ 0 ≤ x ≤ l 2 sin ⁡ φ   } A = \set{(x , \varphi) | 0 \leq x \leq \cfrac{l}{2} \sin{\varphi}} A={ (x,φ)0x2lsinφ}
    • P ( A ) = A 的面积 Ω 的面积 = ∫ 0 π l 2 sin ⁡ φ d φ a 2 ⋅ π = 2 l π a P(A) = \cfrac{A 的面积}{\Omega 的面积} = \cfrac{\displaystyle\int_{0}^{\pi}{\frac{l}{2} \sin{\varphi} d \varphi}}{\frac{a}{2} \cdot \pi} = \cfrac{2l}{\pi a} P(A)=Ω的面积A的面积=2aπ0π2lsinφdφ=πa2l
  • 这个投针问题是法国科学家蒲丰于 1777 1777 1777年提出的有关几何概型的一个著名问题

概率的统计定义
  • 对于随机试验 E E E,重复进行 n n n次,设事件 A A A发生的次数为 m m m,当 n n n充分大时,若 A A A发生的频率 m n \cfrac{m}{n} nm能稳定地在一个确定的数值 p p p附近摆动,则定义 A A A的概率 P ( A ) = p P(A) = p P(A)=p

  • 概率的统计定义提供了一种通过试验去估计概率的方法,有它实用的一面,但在理论和应用中,又有一定的局限性

    • 在理论上,没有理由断定 n + 1 n + 1 n+1次试验计算出的频率会比 n n n次试验计算出的频率更能刻画事件的概率
    • 在实际运用中,无法知道 n n n到底取多大为好,并且 n n n较大时,也不一定能保证试验条件完全一样
概率的公理化定义
  • 古典概型和几何概型受“等可能性”的限制,因而其适用范围有限,概率的统计定义虽然适用于一般情况,但它存在着缺陷,如其中的"稳定地在某一数值 p p p的附近摆动"等提法,不能作为严格的数学定义
  • 在概率论发展的历史上,人们一直寻求严谨的、适合一切随机现象的概率的数学定义,直到 1933 1933 1933年,数学家科尔莫戈罗夫创立了概率论的公理化体系,他从集合论和测度论出发,归纳总结事件及其概率的最基本的性质和关系,用公理的形式给出了概率的数学定义,才使概率论成为理论严谨的数学分支,为近代概率论奠定了坚实的理论基础
  • 定义 1 1 1:若样本空间 Ω \Omega Ω的一些子集所构成的集合 F \mathscr{F} F满足
    • Ω ∈ F \Omega \in \mathscr{F} ΩF
    • A ∈ F A \in \mathscr{F} AF,则 A ˉ ∈ F \bar{A} \in \mathscr{F} AˉF
    • A i ∈ F ( i = 1 , 2 , ⋯   ) A_{i} \in \mathscr{F} (i = 1 , 2 , \cdots) AiF(i=1,2,),则 ⋃ i = 1 ∞ A i ∈ F \bigcup\limits_{i = 1}^{\infty}{A_{i}} \in \mathscr{F} i=1AiF
  • 则称 F \mathscr{F} F Ω \Omega Ω的一个事件域, F \mathscr{F} F中的集合称为事件
    • 由定义 1 1 1容易得到事件域还具有以下性质
      • ∅ ∈ F \emptyset \in \mathscr{F} F
      • A i ∈ F ( i = 1 , 2 , ⋯   ) A_{i} \in \mathscr{F} (i = 1 , 2 , \cdots) AiF(i=1,2,),则 ⋂ i = 1 ∞ A i ∈ F \bigcap\limits_{i = 1}^{\infty}{A_{i}} \in \mathscr{F} i=1AiF
      • A i ∈ F ( i = 1 , 2 , ⋯   , n ) A_{i} \in \mathscr{F} (i = 1 , 2 , \cdots , n) AiF(i=1,2,,n),则 ⋂ i = 1 n A i ∈ F \bigcap\limits_{i = 1}^{n}{A_{i}} \in \mathscr{F} i=1nAiF ⋃ i = 1 n A i ∈ F \bigcup\limits_{i = 1}^{n}{A_{i}} \in \mathscr{F} i=1nAiF
      • A ∈ F A \in \mathscr{F} AF B ∈ F B \in \mathscr{F} BF,则 A − B ∈ F A - B \in \mathscr{F} ABF
    • 上述性质表明,事件域 F \mathscr{F} F对集合的所有运算都是封闭的
  • 定义 2 2 2:设 F \mathscr{F} F是样本空间 Ω \Omega Ω的一个事件域,若对于任一事件 A ∈ F A \in \mathscr{F} AF,定义在 F \mathscr{F} F上的一个实值函数 P ( A ) P(A) P(A)满足
    • 非负性: ∀ A ∈ F \forall A \in \mathscr{F} AF,有 P ( A ) ≥ 0 P(A) \geq 0 P(A)0
    • 规范性: P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1
    • 完全可加性:若 A i ∈ F ( i = 1 , 2 , ⋯   ) A_{i} \in \mathscr{F} (i = 1 , 2 , \cdots) AiF(i=1,2,),且 A i A j = ∅ ( i ≠ j ) A_{i} A_{j} = \emptyset (i \neq j) AiAj=(i=j),则有 P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) P(\bigcup\limits_{i = 1}^{\infty}{A_{i}}) = \sum\limits_{i = 1}^{\infty}{P(A_{i})} P(i=1Ai)=i=1P(Ai)
  • 则称 P ( A ) P(A) P(A)为事件 A A A的概率
    • 定义 2 2 2中概率满足的三个基本性质被称为概率公理
  • 对于一个样本空间 Ω \Omega Ω,给定了 Ω \Omega Ω上的事件域 F \mathscr{F} F,定义了 F \mathscr{F} F上的概率 P P P,称 ( Ω , F , P ) (\Omega , \mathscr{F} , P) (Ω,F,P)为概率空间
概率的性质
  • 性质 1 1 1 P ( ∅ ) = 0 P(\emptyset) = 0 P()=0

    • 证明:因为 Ω = Ω ∪ ∅ ∪ ∅ ∪ ⋯ ∪ ∅ ∪ ⋯ \Omega = \Omega \cup \emptyset \cup \emptyset \cup \cdots \cup \emptyset \cup \cdots Ω=Ω,所以 P ( Ω ) = P ( Ω ) + P ( ∅ ) + P ( ∅ ) + ⋯ + P ( ∅ ) + ⋯ P(\Omega) = P(\Omega) + P(\emptyset) + P(\emptyset) + \cdots + P(\emptyset) + \cdots P(Ω)=P(Ω)+P()+
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值