概率论与数理统计(湖南大学教材《大学数学4(第三版)》)笔记(二)(持续更新中)

前导章节

第四节|分布函数

定义
  • X X X是一个随机变量, x x x是任意实数,称 F ( x ) = P { X ≤ x } F(x) = P \{ X \leq x \} F(x)=P{Xx} X X X的分布函数
  • P { x 1 < X ≤ x 2 } = P { X ≤ x 2 } − P { X ≤ x 1 } = F ( x 2 ) − F ( x 1 ) P \{ x_{1} < X \leq x_{2} \} = P \{ X \leq x_{2} \} - P \{ X \leq x_{1} \} = F(x_{2}) - F(x_{1}) P{x1<Xx2}=P{Xx2}P{Xx1}=F(x2)F(x1)
性质
  • 0 ≤ F ( x ) ≤ 1 , x ∈ R 0 \leq F(x) \leq 1 , x \in R 0F(x)1,xR

  • F ( − ∞ ) = lim ⁡ x → − ∞ F ( x ) = 0 F(- \infty) = \lim\limits_{x \rightarrow - \infty}{F(x)} = 0 F()=xlimF(x)=0 F ( + ∞ ) = lim ⁡ x → + ∞ F ( x ) = 1 F(+ \infty) = \lim\limits_{x \rightarrow + \infty}{F(x)} = 1 F(+)=x+limF(x)=1

  • F ( x ) F(x) F(x)是单调不减的函数,即 F ( x 1 ) ≤ F ( x 2 ) , x 1 < x 2 F(x_{1}) \leq F(x_{2}) , x_{1} < x_{2} F(x1)F(x2),x1<x2

    • 事实上, F ( x 2 ) − F ( x 1 ) = P { x 1 < X ≤ x 2 } ≥ 0 F(x_{2}) - F(x_{1}) = P \{ x_{1} < X \leq x_{2} \} \geq 0 F(x2)F(x1)=P{x1<Xx2}0,故 F ( x 1 ) ≤ F ( x 2 ) F(x_{1}) \leq F(x_{2}) F(x1)F(x2)
  • F ( x ) F(x) F(x)右连续,即 F ( x ) = F ( x + 0 ) F(x) = F(x + 0) F(x)=F(x+0)

  • 满足上述 4 4 4个性质的函数也一定是某个随机变量的分布函数

离散型随机变量的分布函数
  • F ( x ) F(x) F(x)是离散型随机变量的分布函数,则 F ( x ) = P { X ≤ x } = P { ⋃ x k ≤ x ( X = x k ) } = ∑ x k ≤ x P { X = x k } = ∑ x k ≤ x p k F(x) = P \{ X \leq x \} = P \{ \bigcup\limits_{x_{k} \leq x}{(X = x_{k})} \} = \sum\limits_{x_{k} \leq x}{P \{ X = x_{k} \}} = \sum\limits_{x_{k} \leq x}{p_{k}} F(x)=P{Xx}=P{xkx(X=xk)}=xkxP{X=xk}=xkxpk,其中和式是对于所有 x k ≤ x x_{k} \leq x xkx的指标 k k k求和

  • p k = P { X = x k } = F ( x k ) − F ( x k − 0 ) p_{k} = P \{ X = x_{k} \} = F(x_{k}) - F(x_{k} - 0) pk=P{X=xk}=F(xk)F(xk0)

  • 若已知 X X X的分布函数 F ( x ) F(x) F(x),则 P { a ≤ X ≤ b } = P { a < X ≤ b } + P { X = a } = F ( b ) − F ( a ) + P { X = a } P \{ a \leq X \leq b \} = P \{ a < X \leq b \} + P \{ X = a \} = F(b) - F(a) + P \{ X = a \} P{aXb}=P{a<Xb}+P{X=a}=F(b)F(a)+P{X=a}

连续型随机变量的分布函数
  • X X X是连续型随机变量,其概率密度为 f ( x ) f(x) f(x),则 F ( X ) = P { X ≤ x } = ∫ − ∞ x f ( t ) d t F(X) = P \{ X \leq x \} = \displaystyle\int_{- \infty}^{x}{f(t) dt} F(X)=P{Xx}=xf(t)dt,即分布函数是概率密度函数的可变积分上限的定积分
  • f ( x ) f(x) f(x)的连续点,有 d F ( x ) d x = f ( x ) \cfrac{d F(x)}{dx} = f(x) dxdF(x)=f(x),即概率密度函数是分布函数的导数
例题 1 1 1
  • 问题:证明:若 X ∼ N ( μ , σ 2 ) X \sim N (\mu , \sigma^{2}) XN(μ,σ2),则 Y = X − μ σ ∼ N ( 0 , 1 ) Y = \cfrac{X - \mu}{\sigma} \sim N (0 , 1) Y=σXμN(0,1)

  • 解答

    • P { a ≤ Y ≤ b } = P { a ≤ X − μ σ ≤ b } = P { μ + σ a ≤ X ≤ μ + σ b } = ∫ μ + σ a μ + σ b 1 σ 2 π e − ( x − μ ) 2 2 σ 2 d x P \{ a \leq Y \leq b \} = P \{ a \leq \cfrac{X - \mu}{\sigma} \leq b \} = P \{ \mu + \sigma a \leq X \leq \mu + \sigma b \} = \displaystyle\int_{\mu + \sigma a}^{\mu + \sigma b}{\cfrac{1}{\sigma \sqrt{2 \pi}} e^{- \frac{(x - \mu)^{2}}{2 \sigma^{2}}} dx} P{aYb}=P{aσXμb}=P{μ+σaXμ+σb}=μ+σaμ+σbσ2π 1e2σ2(xμ)2dx

    • t = x − μ σ t = \cfrac{x - \mu}{\sigma} t=σxμ,得 P { a ≤ Y ≤ b } = ∫ a b 1 2 π e − t 2 2 d t P \{ a \leq Y \leq b \} = \displaystyle\int_{a}^{b}{\cfrac{1}{\sqrt{2 \pi}} e^{- \frac{t^{2}}{2}} dt} P{aYb}=ab2π 1e2t2dt,则 Y ∼ N ( 0 , 1 ) Y \sim N (0 , 1) YN(0,1)

正态随机变量
  • X ∼ N ( μ , σ 2 ) X \sim N (\mu , \sigma^{2}) XN(μ,σ2),则 Y = a X + b ∼ N ( a μ + b , ∣ a ∣ 2 σ 2 ) Y = aX + b \sim N (a \mu + b , | a |^{2} \sigma^{2}) Y=aX+bN(aμ+b,a2σ2),正态随机变量的线性函数仍为正态随机变量

  • 对于标准正态分布,用 Φ ( x ) \Phi (x) Φ(x)表示分布函数

  • φ ( x ) \varphi (x) φ(x)是偶函数,即 φ ( − x ) = φ ( x ) \varphi (- x) = \varphi (x) φ(x)=φ(x),于是 Φ ( − x ) = 1 − Φ ( x ) \Phi (- x) = 1 - \Phi (x) Φ(x)=1Φ(x)

    • Φ ( − x ) = ∫ − ∞ − x φ ( t ) d t = ∫ x + ∞ φ ( u ) d u ( 令 t = − u ) = ∫ − ∞ + ∞ φ ( u ) d u − ∫ − ∞ x φ ( u ) d u = 1 − Φ ( x ) \Phi (- x) = \displaystyle\int_{- \infty}^{- x}{\varphi (t) dt} = \displaystyle\int_{x}^{+ \infty}{\varphi (u) du} (令 t = - u) = \displaystyle\int_{- \infty}^{+ \infty}{\varphi (u) du} - \int_{- \infty}^{x}{\varphi (u) du} = 1 - \Phi (x) Φ(x)=xφ(t)dt=x+φ(u)du(t=u)=+φ(u)duxφ(u)du=1Φ(x)
  • 正态分布 N ( μ , σ 2 ) N (\mu , \sigma^{2}) N(μ,σ2)的分布函数 F ( x ) = Φ ( x − μ σ ) F(x) = \Phi (\cfrac{x - \mu}{\sigma}) F(x)=Φ(σxμ)

例题 2 2 2
  • 问题:设 X ∼ N ( μ , σ 2 ) X \sim N (\mu , \sigma^{2}) XN(μ,σ2),求 P { ∣ X − μ ∣ < σ } P \{ | X - \mu | < \sigma \} P{Xμ<σ} P { ∣ X − μ ∣ < 2 σ } P \{ | X - \mu | < 2 \sigma \} P{Xμ<2σ} P { ∣ X − μ ∣ < 3 σ } P \{ | X - \mu | < 3 \sigma \} P{Xμ<3σ}

  • 解答

    • P { ∣ X − μ ∣ < σ } = P { μ − σ < X < μ + σ } = Φ ( μ + σ − μ σ ) − Φ ( μ − σ − μ σ ) = Φ ( 1 ) − Φ ( − 1 ) = 2 Φ ( 1 ) − 1 = 0.6827 P \{ | X - \mu | < \sigma \} = P \{ \mu - \sigma < X < \mu + \sigma \} = \Phi (\cfrac{\mu + \sigma - \mu}{\sigma}) - \Phi (\cfrac{\mu - \sigma - \mu}{\sigma}) = \Phi (1) - \Phi (- 1) = 2 \Phi (1) - 1 = 0.6827 P{Xμ<σ}=P{μσ<X<μ+σ}=Φ(σμ+σμ)Φ(σμσμ)=Φ(1)Φ(1)=(1)1=0.6827
    • P { ∣ X − μ ∣ < 2 σ } = 0.9545 P \{ | X - \mu | < 2 \sigma \} = 0.9545 P{Xμ<2σ}=0.9545
    • P { ∣ X − μ ∣ < 3 σ } = 0.9973 P \{ | X - \mu | < 3 \sigma \} = 0.9973 P{Xμ<3σ}=0.9973
  • X X X几乎全部落在 ( μ − 3 σ , μ + 3 σ ) (\mu - 3 \sigma , \mu + 3 \sigma) (μ3σ,μ+3σ)区间内,称为三倍标准差原则( 3 σ 3 \sigma 3σ准则)

例题 3 3 3
  • 问题:设 F 1 ( x ) F_{1} (x) F1(x) F 2 ( x ) F_{2} (x) F2(x)都是分布函数, a > 0 a > 0 a>0 b > 0 b > 0 b>0均为常数,且 a + b = 1 a + b = 1 a+b=1
    • 1 1 1)求证 F ( x ) = a F 1 ( x ) + b F 2 ( x ) F(x) = a F_{1} (x) + b F_{2} (x) F(x)=aF1(x)+bF2(x)也是一个分布函数
    • 2 2 2)由此讨论分布函数是否只有离散型和连续型两种类型
  • 解答
    • 1 1 1)因 F 1 ( x ) F_{1} (x) F1(x) F 2 ( x ) F_{2} (x) F2(x)均为分布函数,则由分布函数的性质,得当 x 1 < x 2 x_{1} < x_{2} x1<x2时,有 F 1 ( x 1 ) ≤ F 1 ( x 2 ) F_{1} (x_{1}) \leq F_{1} (x_{2}) F1(x1)F1(x2) F 2 ( x 1 ) ≤ F 2 ( x 2 ) F_{2} (x_{1}) \leq F_{2} (x_{2}) F2(x1)F2(x2)

      • F ( x 1 ) = a F 1 ( x 1 ) + b F 2 ( x 1 ) ≤ a F 1 ( x 2 ) + b F 2 ( x 2 ) = F ( x 2 ) F(x_{1}) = a F_{1} (x_{1}) + b F_{2} (x_{1}) \leq a F_{1} (x_{2}) + b F_{2} (x_{2}) = F(x_{2}) F(x1)=aF1(x1)+bF2(x1)aF1(x2)+bF2(x2)=F(x2)

      • lim ⁡ x → − ∞ F ( x ) = lim ⁡ x → − ∞ [ a F 1 ( x ) + b F 2 ( x ) ] = 0 \lim\limits_{x \rightarrow - \infty}{F(x)} = \lim\limits_{x \rightarrow - \infty}{[a F_{1} (x) + b F_{2} (x)]} = 0 xlimF(x)=xlim[aF1(x)+bF2(x)]=0

      • lim ⁡ x → + ∞ F ( x ) = lim ⁡ x → + ∞ [ a F 1 ( x ) + b F 2 ( x ) ] = a + b = 1 \lim\limits_{x \rightarrow + \infty}{F(x)} = \lim\limits_{x \rightarrow + \infty}{[a F_{1} (x) + b F_{2} (x)]} = a + b = 1 x+limF(x)=x+lim[aF1(x)+bF2(x)]=a+b=1

      • F ( x + 0 ) = a F 1 ( x + 0 ) + b F 2 ( x + 0 ) = a F 1 ( x ) + b F 2 ( x ) = F ( x ) F(x + 0) = a F_{1} (x + 0) + b F_{2} (x + 0) = a F_{1} (x) + b F_{2} (x) = F(x) F(x+0)=aF1(x+0)+bF2(x+0)=aF1(x)+bF2(x)=F(x)

      • 因此 F ( x ) F(x) F(x)也是分布函数

    • 2 2 2)取 a = b = 1 2 a = b = \cfrac{1}{2} a=b=21,令 F 1 ( x ) = { 0 , x < 0 1 , x ≥ 0 F_{1} (x) = \begin{cases} 0 , & x < 0 \\ 1 , & x \geq 0 \end{cases} F1(x)={0,1,x<0x0 F 2 ( x ) = { 0 , x < 0 x , 0 ≤ x ≤ 1 1 , x > 1 F_{2} (x) = \begin{cases} 0 , & x < 0 \\ x , & 0 \leq x \leq 1 \\ 1 , & x > 1 \end{cases} F2(x)= 0,x,1,x<00x1x>1,则 F ( x ) = { 0 , x < 0 1 + x 2 , 0 ≤ x ≤ 1 1 , x > 1 F(x) = \begin{cases} 0 , & x < 0 \\ \cfrac{1 + x}{2} , & 0 \leq x \leq 1 \\ 1 , & x > 1 \end{cases} F(x)= 0,21+x,1,x<00x1x>1

      • 显然,此分布函数 F ( x ) F(x) F(x)既不是阶梯函数也不是连续函数,于是 F ( x ) F(x) F(x)所对应的随机变量既不是离散型也不是连续型
      • 随机变量并非只有离散型和连续型两大类型

第五节|随机变量函数的分布

离散型随机变量函数的分布
  • 设随机变量 X X X的分布律 P { X = x k } = p k , k = 1 , 2 , ⋯ P \{ X = x_{k} \} = p_{k} , k = 1 , 2 , \cdots P{X=xk}=pk,k=1,2,,则当 Y = g ( X ) Y = g(X) Y=g(X)的所有取值为 y j ( j = 1 , 2 , ⋯   ) y_{j} (j = 1 , 2 , \cdots) yj(j=1,2,)时,随机变量 Y Y Y的分布律为 P { Y = y j } = q j , j = 1 , 2 , ⋯ P \{ Y = y_{j} \} = q_{j} , j = 1 , 2 , \cdots P{Y=yj}=qj,j=1,2,,其中 q j q_{j} qj是所有满足 g ( x i ) = y j g(x_{i}) = y_{j} g(xi)=yj x i x_{i} xi对应的 X X X的概率 P { X = x i } = p i P \{ X = x_{i} \} = p_{i} P{X=xi}=pi的和,即 P { Y = y j } = ∑ g ( x i ) = y j P { X = x i } P \{ Y = y_{j} \} = \sum\limits_{g(x_{i}) = y_{j}}{P \{ X = x_{i} \}} P{Y=yj}=g(xi)=yjP{X=xi}
例题 1 1 1
  • 问题:设随机变量 X X X的概率密度为 f X ( x ) f_{X} (x) fX(x),求 Y = a X + b Y = aX + b Y=aX+b a a a b b b为常数,且 a ≠ 0 a \neq 0 a=0)的概率密度
  • 解答
    • X X X Y Y Y的分布函数分别为 F X ( x ) F_{X} (x) FX(x) F Y ( y ) F_{Y} (y) FY(y) Y Y Y的概率密度为 f Y ( y ) f_{Y} (y) fY(y)
    • 由分布函数定义,得 F Y ( y ) = P { Y ≤ y } = P { a X + b ≤ y } F_{Y} (y) = P \{ Y \leq y \} = P \{ aX + b \leq y \} FY(y)=P{Yy}=P{aX+by}
    • a > 0 a > 0 a>0时,有 F Y ( y ) = P { X ≤ y − b a } = F X ( y − b a ) = ∫ − ∞ y − b a f X ( x ) d x F_{Y} (y) = P \{ X \leq \cfrac{y - b}{a} \} = F_{X} (\cfrac{y - b}{a}) = \displaystyle\int_{- \infty}^{\frac{y - b}{a}}{f_{X} (x) dx} FY(y)=P{Xayb}=FX(ayb)=aybfX(x)dx
    • a < 0 a < 0 a<0时,有 F Y ( y ) = P { X ≥ y − b a } = ∫ y − b a + ∞ f X ( x ) d x = − ∫ − ∞ y f X ( t − b a ) ⋅ 1 a d t , ( 令 x = t − b a ) F_{Y} (y) = P \{ X \geq \cfrac{y - b}{a} \} = \displaystyle\int_{\frac{y - b}{a}}^{+ \infty}{f_{X} (x) dx} = - \displaystyle\int_{- \infty}^{y}{f_{X} (\cfrac{t - b}{a}) \cdot \cfrac{1}{a} dt} , (令 x = \cfrac{t - b}{a}) FY(y)=P{Xayb}=ayb+fX(x)dx=yfX(atb)a1dt,(x=atb)
    • F Y ( y ) F_{Y} (y) FY(y)求导,得 Y Y Y的概率密度

f Y ( y ) = { 1 a f X ( y − b a ) , a > 0 − 1 a f X ( y − b a ) , a < 0 f_{Y} (y) = \begin{cases} \cfrac{1}{a} f_{X} (\cfrac{y - b}{a}) , & a > 0 \\ -\cfrac{1}{a} f_{X} (\cfrac{y - b}{a}) , & a < 0 \end{cases} fY(y)= a1fX(ayb),a1fX(ayb),a>0a<0

    • f Y ( y ) = 1 ∣ a ∣ f X ( y − b a ) ( a ≠ 0 , y ∈ R ) f_{Y} (y) = \cfrac{1}{| a |} f_{X} (\cfrac{y - b}{a}) (a \neq 0 , y \in R) fY(y)=a1fX(ayb)(a=0,yR)
  • y = f ( x ) y = f(x) y=f(x)的反函数为 x = h ( y ) = y − b a x = h(y) = \cfrac{y - b}{a} x=h(y)=ayb,且 ∣ h ′ ( y ) ∣ = 1 ∣ a ∣ | h^{'} (y) | = \cfrac{1}{| a |} h(y)=a1,故 f Y ( y ) = f X [ h ( y ) ] ⋅ ∣ h ′ ( y ) ∣ f_{Y} (y) = f_{X} [h(y)] \cdot | h^{'} (y) | fY(y)=fX[h(y)]h(y)

连续型随机变量函数的分布
  • X X X为连续型随机变量, f X ( x ) f_X (x) fX(x) X X X的概率密度,若 y = g ( x ) y = g(x) y=g(x)为严格单调的连续函数,且反函数 x = h ( y ) x = h(y) x=h(y)有连续导数,则 Y = g ( X ) Y = g(X) Y=g(X)为连续型随机变量,且概率密度为 f Y ( y ) = f X [ h ( y ) ] ⋅ ∣ h ′ ( y ) ∣ f_{Y} (y) = f_{X} [h(y)] \cdot | h^{'} (y) | fY(y)=fX[h(y)]h(y)

    • 证明
      • y = g ( x ) y = g(x) y=g(x)为严格单调增加的连续函数,定义域为 ( a , b ) ⊂ ( − ∞ , + ∞ ) (a , b) \subset (- \infty , + \infty) (a,b)(,+),值域为 ( α , β ) ⊂ ( − ∞ , + ∞ ) (\alpha , \beta) \subset (- \infty , + \infty) (α,β)(,+),则其反函数 x = h ( y ) x = h(y) x=h(y) ( α , β ) (\alpha , \beta) (α,β)上也为严格单调增加的连续函数( h ′ ( y ) > 0 h^{'} (y) > 0 h(y)>0

      • F Y ( y ) = P { Y ≤ y } = P { g ( X ) ≤ y } = P { X ≤ h ( y ) } = ∫ − ∞ h ( y ) f X ( x ) d x = ∫ a h ( y ) f X ( x ) d x F_{Y} (y) = P \{ Y \leq y \} = P \{ g(X) \leq y \} = P \{ X \leq h(y) \} = \displaystyle\int_{- \infty}^{h(y)}{f_{X} (x) dx} = \displaystyle\int_{a}^{h(y)}{f_{X} (x) dx} FY(y)=P{Yy}=P{g(X)y}=P{Xh(y)}=h(y)fX(x)dx=ah(y)fX(x)dx

      • f Y ( y ) = F Y ′ ( y ) = f X [ h ( y ) ] ⋅ h ′ ( y ) , h ′ ( y ) > 0 f_{Y} (y) = F_{Y}^{'}{(y)} = f_{X} [h(y)] \cdot h^{'} (y) , h^{'} (y) > 0 fY(y)=FY(y)=fX[h(y)]h(y),h(y)>0

      • 类似地,当 y = g ( x ) y = g(x) y=g(x)为严格单调减少时,有 f Y ( y ) = − f X [ h ( y ) ] ⋅ h ′ ( y ) , h ′ ( y ) < 0 f_{Y} (y) = - f_{X} [h(y)] \cdot h^{'} (y) , h^{'} (y) < 0 fY(y)=fX[h(y)]h(y),h(y)<0

定理 1 1 1
  • Y = g ( X ) Y = g(X) Y=g(X) X X X为连续型随机变量, f X ( x ) f_{X} (x) fX(x) X X X的概率密度,若 y = g ( x ) y = g(x) y=g(x)为连续函数,它在不相重叠的区间 I 1 I_{1} I1 I 2 I_{2} I2 ⋯ \cdots 上逐段严格单调,对应的反函数分别为 h 1 ( y ) h_{1} (y) h1(y) h 2 ( y ) h_{2} (y) h2(y) ⋯ \cdots ,而且 h 1 ′ ( y ) h_{1}^{'}{(y)} h1(y) h 2 ′ ( y ) h_{2}^{'}{(y)} h2(y) ⋯ \cdots 均连续,则 Y = g ( X ) Y = g(X) Y=g(X)为连续型随机变量,且概率密度为 f Y ( y ) = ∑ i f X [ h i ( y ) ] ⋅ ∣ h i ′ ( y ) ∣ f_{Y} (y) = \sum\limits_{i}{f_{X} [h_{i} (y)] \cdot | h_{i}^{'}{(y)} |} fY(y)=ifX[hi(y)]hi(y)
    • 约定:对使反函数 h ( y ) h(y) h(y)或其导数 h ′ ( y ) h^{'} (y) h(y)无意义的 y y y f Y ( y ) = 0 f_{Y} (y) = 0 fY(y)=0
例题 2 2 2
  • 问题:设质点 M M M随机地落在以原点为圆心以 R R R为半径的圆周上,且对弧长是均匀分布的,求质点 M M M的横坐标 X X X的概率密度
  • 解答
    • Z Z Z x x x轴与 O M OM OM的夹角,则 X = R cos ⁡ Z X = R \cos{Z} X=RcosZ,据题意知, Z ∼ U [ − π , π ] Z \sim U [- \pi , \pi] ZU[π,π],其概率密度为

f Z ( z ) = { 1 2 π , − π ≤ z ≤ π 0 , 其他 f_{Z} (z) = \begin{cases} \cfrac{1}{2 \pi} , & - \pi \leq z \leq \pi \\ 0 , & 其他 \end{cases} fZ(z)= 2π1,0,πzπ其他

    • 解法一
      • F X ( x ) = P { X ≤ x } = P { R cos ⁡ z ≤ x } = P { cos ⁡ z ≤ x R } , ∀ x ∈ ( − ∞ , + ∞ ) F_{X} (x) = P \{ X \leq x \} = P \{ R \cos{z} \leq x \} = P \{ \cos{z} \leq \cfrac{x}{R} \} , \forall x \in (- \infty , + \infty) FX(x)=P{Xx}=P{Rcoszx}=P{coszRx},x(,+)
      • x ≤ − R x \leq - R xR时, F X ( x ) = 0 F_{X} (x) = 0 FX(x)=0 f X ( x ) = 0 f_{X} (x) = 0 fX(x)=0
      • x ≥ R x \geq R xR时, F X ( x ) = 1 F_{X} (x) = 1 FX(x)=1 f X ( x ) = 0 f_{X} (x) = 0 fX(x)=0
      • − R < x < R - R < x < R R<x<R时,

F X ( x ) = P { R cos ⁡ z ≤ x } = P { cos ⁡ z ≤ x R } = P { − π ≤ z ≤ − arccos ⁡ x R } + P { arccos ⁡ x R ≤ z ≤ π } = F Z ( − arccos ⁡ x R ) − F Z ( − π ) + F Z ( π ) − F Z ( arccos ⁡ x R ) \begin{aligned} F_{X} (x) = P \{ R \cos{z} \leq x \} &= P \{ \cos{z} \leq \cfrac{x}{R} \} \\ &= P \{ - \pi \leq z \leq - \arccos{\cfrac{x}{R}} \} + P \{ \arccos{\cfrac{x}{R}} \leq z \leq \pi \} \\ &= F_{Z} (- \arccos{\cfrac{x}{R}}) - F_{Z} (- \pi) + F_{Z} (\pi) - F_{Z} (\arccos{\cfrac{x}{R}}) \end{aligned} FX(x)=P{Rcoszx}=P{coszRx}=P{πzarccosRx}+P{arccosRxzπ}=FZ(arccosRx)FZ(π)+FZ(π)FZ(arccosRx)

      • f X ( x ) = F X ′ ( x ) = f Z ( − arccos ⁡ x R ) ⋅ 1 1 − ( x R ) 2 ⋅ 1 R + f Z ( arccos ⁡ x R ) ⋅ 1 1 − ( x R ) 2 ⋅ 1 R = 1 π R 2 − x 2 f_{X} (x) = F_{X}^{'}{(x)} = f_{Z} (- \arccos{\cfrac{x}{R}}) \cdot \cfrac{1}{\sqrt{1 - (\frac{x}{R})^{2}}} \cdot \cfrac{1}{R} + f_{Z} (\arccos{\cfrac{x}{R}}) \cdot \cfrac{1}{\sqrt{1 - (\frac{x}{R})^{2}}} \cdot \cfrac{1}{R} = \cfrac{1}{\pi \sqrt{R^{2} - x^{2}}} fX(x)=FX(x)=fZ(arccosRx)1(Rx)2 1R1+fZ(arccosRx)1(Rx)2 1R1=πR2x2 1

f X ( x ) = { 1 π R 2 − x 2 , ∣ x ∣ < R 0 , ∣ x ∣ ≥ R f_{X} (x) = \begin{cases} \cfrac{1}{\pi \sqrt{R^{2} - x^{2}}} , & | x | < R \\ 0 , & | x | \geq R \end{cases} fX(x)= πR2x2 1,0,x<RxR

    • 解法二
      • 因为 x = R cos ⁡ z x = R \cos{z} x=Rcosz ( − π , 0 ) (- \pi , 0) (π,0) ( 0 , π ) (0 , \pi) (0,π)上分别为严格单调的连续函数,相应的反函数分别为 z 1 = h 1 ( x ) = − arccos ⁡ x R z_{1} = h_{1} (x) = - \arccos{\cfrac{x}{R}} z1=h1(x)=arccosRx z 2 = h 2 ( x ) = arccos ⁡ x R , ∣ x ∣ < R z_{2} = h_{2} (x) = \arccos{\cfrac{x}{R}} , | x | < R z2=h2(x)=arccosRx,x<R

      • f X ( x ) = f Z ( − arccos ⁡ x R ) ∣ ( − arccos ⁡ x R ) ′ ∣ + f Z ( arccos ⁡ x R ) ∣ ( arccos ⁡ x R ) ′ ∣ = 1 π R 2 − x 2 , ∣ x ∣ < R f_{X} (x) = f_{Z} (- \arccos{\cfrac{x}{R}}) | (- \arccos{\cfrac{x}{R}})^{'} | + f_{Z} (\arccos{\cfrac{x}{R}}) | (\arccos{\cfrac{x}{R}})^{'} | = \cfrac{1}{\pi \sqrt{R^{2} - x^{2}}} , | x | < R fX(x)=fZ(arccosRx)(arccosRx)+fZ(arccosRx)(arccosRx)=πR2x2 1,x<R

      • ∣ x ∣ ≥ R | x | \geq R xR时, f X ( x ) = 0 f_{X} (x) = 0 fX(x)=0

例题 3 3 3
  • 问题:已知随机变量 X X X的分布函数 F ( x ) F(x) F(x)是严格单调增加的连续函数,证明 F ( X ) F(X) F(X)服从 [ 0 , 1 ] [0 , 1] [0,1]上的均匀分布

  • 解答

    • 由于 F ( x ) F(x) F(x)是严格单调增加的连续函数, 0 ≤ F ( x ) ≤ 1 0 \leq F(x) \leq 1 0F(x)1,因而 0 ≤ y ≤ 1 0 \leq y \leq 1 0y1时, y = F ( x ) y = F(x) y=F(x)有反函数 x = F − 1 ( y ) x = F^{- 1} (y) x=F1(y)

    • y < 0 y < 0 y<0时, F Y ( y ) = P { Y ≤ y } = P { F ( X ) ≤ y } = 0 F_{Y} (y) = P \{ Y \leq y \} = P \{ F(X) \leq y \} = 0 FY(y)=P{Yy}=P{F(X)y}=0

    • 0 ≤ y < 1 0 \leq y < 1 0y<1时, F Y ( y ) = P { F ( X ) ≤ y } = P { X ≤ F − 1 ( y ) } = F ( F − 1 ( y ) ) = y F_{Y} (y) = P \{ F(X) \leq y \} = P \{ X \leq F^{- 1} (y) \} = F(F^{- 1} (y)) = y FY(y)=P{F(X)y}=P{XF1(y)}=F(F1(y))=y

    • y ≥ 1 y \geq 1 y1时, F Y ( y ) = P { F ( X ) ≤ y } = 1 F_{Y} (y) = P \{ F(X) \leq y \} = 1 FY(y)=P{F(X)y}=1

F Y ( y ) = { 0 , y < 0 y , 0 ≤ y < 1 1 , y ≥ 1 F_{Y} (y) = \begin{cases} 0 , & y < 0 \\ y , & 0 \leq y < 1 \\ 1 , & y \geq 1 \end{cases} FY(y)= 0,y,1,y<00y<1y1

f Y ( y ) = { 1 , 0 ≤ y < 1 0 , 其他 f_{Y} (y) = \begin{cases} 1 , & 0 \leq y < 1 \\ 0 , & 其他 \end{cases} fY(y)={1,0,0y<1其他

    • Y ∼ U [ 0 , 1 ] Y \sim U [0 , 1] YU[0,1]
  • 该命题广泛用于计算机仿真模拟中


  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值