2024年第二十一届五一数学建模竞赛题目(A题 钢板最优切割路径问题)

问题一:下料切割布局 N1 的最优切割路径

1. 问题背景与目标

该问题要求针对图 2 所示的下料切割布局 N1,设计最优的切割路径方案。根据题目描述(图 1),钢板切割过程包含实际切割和空程移动两个部分。空程是指切割设备在完成一段切割后,移动到下一段切割起点过程中的非切割水平运动。优化的目标是最小化整个切割过程中的总空程长度,以提高生产效率。布局 N1 中包含一个矩形零件 A1A2A3A4 需要切割,切割起始点固定为 B1。钢板边界线 B3-B4 不进行切割。

2. 模型建立

2.1 坐标系与几何信息提取

为了精确描述零件位置和切割路径,我们首先建立一个二维笛卡尔坐标系。根据图 2 中的尺寸标注,可以设定 B4 点为坐标原点 (0, 0)。各关键点的坐标计算如下:

  • B4 = (0, 0)

  • B1 = (80, 0) (根据底边长度 80)

  • B2 = (80, 50) (根据右侧高度 50)

  • B3 = (0, 50)

  • A1: x 坐标 = B1 的 x 坐标 - 20 = 80 - 20 = 60;y 坐标 = B4 的 y 坐标 + 15 = 0 + 15 = 15。所以 A1 = (60, 15)。

  • A4: y 坐标与 A1 相同 = 15;x 坐标 = A1 的 x 坐标 - 40 = 60 - 40 = 20。所以 A4 = (20, 15)。

  • A3: x 坐标与 A4 相同 = 20;y 坐标 = A4 的 y 坐标 + 20 = 15 + 20 = 35。所以 A3 = (20, 35)。

  • A2: y 坐标与 A3 相同 = 35;x 坐标与 A1 相同 = 60。所以 A2 = (60, 35)。

需要切割的零件是矩形 A1A2A3A4,其边界由四个线段组成:A1A2, A2A3, A3A4, A4A1。 切割的起始点(切割头初始位置)为 S = B1 = (80, 0)。

2.2 空程分析与优化目标

空程发生在从一个切割段的终点移动到下一个切割段的起点的过程中。在本问题中,由于只有一个独立的矩形零件需要切割,且切割起始点固定为 B1,因此唯一的空程发生在从起始点 B1 移动到矩形零件 A1A2A3A4 轮廓上的第一个切割点 (即切割入口点) 的过程。

一旦切割开始,例如从 P 点开始沿 A1A2A3A4 轮廓进行切割,切割过程本身是连续的,内部不产生空程。完成整个矩形轮廓切割后,切割任务结束(题目未要求返回起点 B1 或特定终点)。因此,总空程长度即为从 B1 到所选切割入口点 P 的距离。

我们的目标是选择矩形 A1A2A3A4 轮廓上的一个点 P,使得从起始点 S = B1 到该点 P 的欧几里得距离 d(S, P) 最小。这个最小距离就是该布局下的最短总空程长度。

2.3 数学模型

设矩形 A1A2A3A4 的轮廓线集合为 L,轮廓线上的任意一点表示为 P = (x, y)。起始点为 S = (x_s, y_s) = (80, 0)。我们需要求解以下优化问题:

  • 目标函数: 最小化空程距离 d(S, P)Minimize d(S, P) = sqrt((x - x_s)^2 + (y - y_s)^2) = sqrt((x - 80)^2 + (y - 0)^2)

  • 约束条件:P(x, y) 必须位于矩形 A1A2A3A4 的轮廓 L 上。轮廓 L 由以下四个线段组成:

    1. 线段 A1A2: x = 60, 15 <= y <= 35

    2. 线段 A2A3: y = 35, 20 <= x <= 60

    3. 线段 A3A4: x = 20, 15 <= y <= 35

    4. 线段 A4A1: y = 15, 20 <= x <= 60

由于最小化 d(S, P) 等价于最小化其平方 d(S, P)^2,我们可以将目标函数简化为:

  • 等价目标函数: Minimize f(x, y) = (x - 80)^2 + y^2

3. 模型求解

我们可以通过分析目标函数在矩形轮廓的四个线段上的最小值来求解该问题。

  • 线段 A1A2 (x=60, 15<=y<=35): f(60, y) = (60 - 80)^2 + y^2 = (-20)^2 + y^2 = 400 + y^2 该函数在 15 <= y <= 35 区间内是关于 y 的增函数。因此,最小值在 y = 15 处取得,对应点为 A1(60, 15)。 最小值为 f(60, 15) = 400 + 15^2 = 400 + 225 = 625。 对应的距离 d = sqrt(625) = 25

  • 线段 A2A3 (y=35, 20<=x<=60): f(x, 35) = (x - 80)^2 + 35^2 = (x - 80)^2 + 1225 该函数在 x = 80 时取最小值,但在区间 20 <= x <= 60 内,函数值随着 x 靠近 80 而减小。因此,最小值在 x = 60 处取得,对应点为 A2(60, 35)。 最小值为 f(60, 35) = (60 - 80)^2 + 1225 = 400 + 1225 = 1625。 对应的距离 d = sqrt(1625) ≈ 40.31

  • 线段 A3A4 (x=20, 15<=y<=35): f(20, y) = (20 - 80)^2 + y^2 = (-60)^2 + y^2 = 3600 + y^2 该函数在 15 <= y <= 35 区间内是关于 y 的增函数。因此,最小值在 y = 15 处取得,对应点为 A4(20, 15)。 最小值为 f(20, 15) = 3600 + 15^2 = 3600 + 225 = 3825。 对应的距离 d = sqrt(3825) ≈ 61.85

  • 线段 A4A1 (y=15, 20<=x<=60): f(x, 15) = (x - 80)^2 + 15^2 = (x - 80)^2 + 225 同样,该函数在区间 20 <= x <= 60 内,最小值在 x = 60 处取得,对应点为 A1(60, 15)。 最小值为 f(60, 15) = (60 - 80)^2 + 225 = 400 + 225 = 625。 对应的距离 d = sqrt(625) = 25

比较 四个线段上的最小值 (625, 1625, 3825, 625),全局最小值在点 A1(60, 15) 处取得,最小距离平方为 625,对应的最小距离为 25。

4. 结果与最优路径方案

  • 最优切割入口点: 矩形轮廓上距离起始点 B1(80, 0) 最近的点是顶点 A1(60, 15)。

  • 最短总空程长度: 从 B1 到 A1 的距离为 25 个单位长度。

  • 最优切割路径方案:

    1. 切割头从起始点 B1(80, 0) 开始。

    2. 执行空程移动,直线移动到矩形零件的顶点 A1(60, 15)。此段为空程,长度为 25。

    3. 从 A1 点开始,沿矩形轮廓进行切割。一个可能的切割顺序是 A1 -> A2 -> A3 -> A4 -> A1。总切割长度为 2*(40+20) = 120。

    4. 切割完成后停留在 A1 点(或根据实际设备操作要求进行后续动作,但这已超出题目明确要求的空程计算范围)。

5. MATLAB 辅助求解与可视化

下面是使用 MATLAB 进行计算确认和可视化的代码:

% --- 问题一:N1布局最优切割路径求解 ---

clear; clc; close all; % 清理环境

% --- 1. 定义坐标 ---
B1 = [80, 0]; % 起始点
A1 = [60, 15]; % 矩形顶点
A2 = [60, 35];
A3 = [20, 35];
A4 = [20, 15];

% 矩形顶点按顺序排列,用于绘图
rect_vertices = [A1; A2; A3; A4; A1]; % 回到起点以闭合矩形

% --- 2. 计算起始点到各顶点的距离 ---
dist_B1_A1 = norm(B1 - A1); % norm计算欧几里得范数(距离)
dist_B1_A2 = norm(B1 - A2);
dist_B1_A3 = norm(B1 - A3);
dist_B1_A4 = norm(B1 - A4);

% (虽然几何分析已知A1最近,这里演示计算过程)
% 通常需要找到轮廓上最近点,对于矩形,最近点可能是顶点或边上投影点
% 但在本例中,B1的y=0,x=80,易知其在矩形四个边上的投影:
% 投影到 A1A2 (x=60): 点(60,0), 不在15<=y<=35内。最近端点A1(60,15)
% 投影到 A2A3 (y=35): 点(80,35), 不在20<=x<=60内。最近端点A2(60,35)
% 投影到 A3A4 (x=20): 点(20,0), 不在15<=y<=35内。最近端点A4(20,15)
% 投影到 A4A1 (y=15): 点(80,15), 不在20<=x<=60内。最近端点A1(60,15)
% 比较B1到A1, A2, A3, A4的距离即可找到轮廓上的最近点
distances_to_vertices = [dist_B1_A1, dist_B1_A2, dist_B1_A3, dist_B1_A4];
vertices = {A1, A2, A3, A4}; % 将坐标存入cell数组

% 找到最小距离及其对应的顶点
[min_dist, min_idx] = min(distances_to_vertices);
optimal_entry_point = vertices{min_idx};

% --- 3. 输出结果 ---
fprintf('--- 问题一 (N1 布局) 求解结果 ---\n');
fprintf('坐标系统:以 B4 为原点 (0, 0)\n');
fprintf('切割起始点 B1 坐标: (%.1f, %.1f)\n', B1(1), B1(2));
fprintf('矩形零件顶点坐标:\n');
fprintf('  A1: (%.1f, %.1f)\n', A1(1), A1(2));
fprintf('  A2: (%.1f, %.1f)\n', A2(1), A2(2));
fprintf('  A3: (%.1f, %.1f)\n', A3(1), A3(2));
fprintf('  A4: (%.1f, %.1f)\n', A4(1), A4(2));
fprintf('\n');
fprintf('计算得到的最优切割入口点坐标: (%.1f, %.1f)\n', optimal_entry_point(1), optimal_entry_point(2));
fprintf('最短总空程长度: %.4f\n', min_dist);
fprintf('\n最优切割路径方案描述:\n');
fprintf('1. 从起始点 B1(%.1f, %.1f) 开始。\n', B1(1), B1(2));
fprintf('2. 空程移动至最优入口点 A1(%.1f, %.1f),空程距离 %.4f。\n', optimal_entry_point(1), optimal_entry_point(2), min_dist);
fprintf('3. 沿矩形轮廓 A1->A2->A3->A4->A1 进行切割。\n');

% --- 4. 可视化结果 ---
figure; % 创建新图形窗口
hold on; % 保持图形,后续绘图叠加

% 绘制矩形零件
plot(rect_vertices(:,1), rect_vertices(:,2), 'b-', 'LineWidth', 1.5); % 蓝色实线绘制矩形

% 标记顶点
scatter([A1(1), A2(1), A3(1), A4(1)], [A1(2), A2(2), A3(2), A4(2)], 50, 'b', 'filled'); % 蓝色实心点标记顶点
text(A1(1)+1, A1(2)-1, 'A1', 'Color', 'b'); % 标注顶点名称
text(A2(1)+1, A2(2)+1, 'A2', 'Color', 'b');
text(A3(1)-3, A3(2)+1, 'A3', 'Color', 'b');
text(A4(1)-3, A4(2)-1, 'A4', 'Color', 'b');

% 标记起始点 B1
scatter(B1(1), B1(2), 100, 'r', 'p', 'filled'); % 红色实心五角星标记起始点
text(B1(1), B1(2)-2, 'B1 (起点)', 'Color', 'r', 'HorizontalAlignment', 'center');

% 绘制最优空程路径
plot([B1(1), optimal_entry_point(1)], [B1(2), optimal_entry_point(2)], 'r--', 'LineWidth', 1.5); % 红色虚线绘制空程路径

% 设置图形属性
title('问题一 (N1 布局) 最优切割路径方案');
xlabel('X 坐标');
ylabel('Y 坐标');
axis equal; % 保持 x, y 轴比例一致
grid on; % 显示网格
legend({'待切割零件 (A1A2A3A4)', '零件顶点', '切割起始点 (B1)', '最优空程路径'}, 'Location', 'best');
hold off; % 结束图形保持状态

% 调整坐标轴范围以更好地显示
xlim([-10, 90]);
ylim([-10, 60]);

<think>嗯,用户问的是边框生产中的最优切割法。这个问题应该属于优化问题中的切割下料问题(Cutting Stock Problem)。首先,我得回想一下相关的算法和解决方法。 切割下料问题主要是要在满足订单需求的前提下,尽量减少原材料的使用,降低成本。常见的应用比如钢管、木材、玻璃等的切割边框生产应该类似,需要将长型材料按不同长度需求切割,减少浪费。 首先,这个问题可以建模为一个线性规划或者整数规划问题,但因为实际中可能规模较大,精确解可能计算复杂,所以可能需要启发式算法,比如贪心算法或者遗传算法。不过用户可能需要一个具体的解决方案,可能先给出一个动态规划的方法,因为对于小规模问题,动态规划可以找到最优解。 比如,假设原材料长度为L,有不同长度的需求,如何切割使得使用的原材料最少。动态规划的思路是,对于每个可能的长度,计算最小的使用次数。状态转移方程可能是dp[i]= min(dp[i], dp[i -length] +1),其中length是需求的某个长度,i从1到L。 或者,如果是多根原材料,可能需要更复杂的模型。但如果是单一种类的原材料,并且需求是多个不同长度的订单,那么可以使用一维切割下料问题的解法。比如,先处理最长的需求,尽可能多切,剩下的部分再处理次长的,这样可以减少浪费。这可能是一种贪心策略,但可能不是最优的,不过实现起来简单。比如,按长度从大到小排序,每次尽可能多切最长的,余料再用于较小的长度。这可能适用于实际生产中,虽然不一定最优,但计算速度快。不过用户可能需要的是动态规划的解法,或者更优化的方法。比如,给出一个Python的示例代码,使用动态规划来解决一维下料问题。那我可以先写一个动态规划的函数,输入是原材料的长度和需求的各段长度及数量,输出是最少需要的原材料数量。不过这可能比较复杂,因为要考虑每个需求的数量限制。或者,可能用户的问题更简化,比如如何将一根原材料切割成不同长度的段,使得总浪费最少。这种情况下,可能是一个背包问题的变种,即背包问题是最大化价值,这里是最小化剩余材料。 例如,每个需求长度对应的数量,如何组合使得每根原材料的切割方式最优。这种情况下,可能需要生成所有可能的切割模式,然后用线性规划求解。这属于列生成方法,适用于大规模问题,但实现起来比较复杂。 不过对于初学者或者简单的应用,可能更倾向于贪心算法。例如,每次切割时选择余料最小的方式。或者,先切最长的,再处理余下的部分。现在需要具体举例。假设原材料长度是6000mm,需求是多个不同长度的框,比如有若干根1200mm、1500mm、1800mm的订单。如何安排切割顺序,使得使用的原材料最少? 比如,先尝试切割最长的1800mm,6000 /1800 =3次,余6000 -3*1800=600mm,无法再切其他长度。或者,切两个1800,余6000-2*1800=2400,可以再切一个1500和一个900,但900可能无法满足需求。但如果有需求是其他长度,比如可能余料能被其他需求利用。 但这样的贪心策略可能不如动态规划有效。所以,这里可能需要更系统的方法。可能的解决方案步骤:1. 确定所有可能的切割模式。例如,对于每根原材料,生成所有可能的切割方式,满足各段长度之和不超过原材料长度,并且满足需求的长度可能。 2.使用线性规划或整数规划,选择最少的切割模式数量,满足所有需求。 不过这在代码实现上比较复杂,可能需要使用专门的库,如Python的PuLP或者OR-Tools。例如,使用PuLP库来建立整数规划模型,求解最小需要的原材料根数。 或者,如果问题规模较小,可以用动态规划来处理。比如,对于每根原材料,计算能切割的不同组合,然后递归地处理剩余的需求。 不过这可能比较复杂,尤其是当需求数量较多时。 例如,假设需求是不同长度的数量,比如需要切割成a个l1,b个l2,c个l3等。如何组合这些到原材料中,使得总根数最少。这个时候,可能用列生成法,每次生成一个有效的切割模式,然后求解。 不过,用户可能需要一个具体的代码示例。所以我需要给出一个简单的实现,可能基于贪心算法,或者动态规划,或者使用现有的库。 比如,使用动态规划的方法,针对一维切割问题,计算最少的原材料数量。或者使用递归的方式尝试所有可能的组合,找到最优解。 或者,给出一个简化的示例,假设每种切割模式可以切割不同的段数,然后寻找最优的组合。例如,用Python写一个函数,输入是原材料长度和各个需求的长度及数量,输出最少需要的原材料数量。 但这样的问题可能需要较复杂的代码,特别是处理多个不同的需求数量。比如,使用回溯或者剪枝的算法,但这对于大规模问题不现实。 所以,可能给出一个基于动态规划的解决方案,处理单一需求的情况,或者给出一个基于贪心的示例,并指出其局限性。 或者,参考切割问题的经典解法,比如Gilmoreand Gomory算法,但这可能需要更复杂的实现。 考虑到用户可能需要一个简单易懂的示例,这里可以先用贪心算法,按长度从大到小切割,每次尽可能多切最长的,然后处理余料。虽然不一定最优,但容易实现。 例如:原材料长度L=6000mm,需求:2根1800mm,4根1500mm,5根1200mm。贪心算法步骤: 1.按长度降序排序:1800,1500,1200。 2. 对于每根原材料,尽可能先切最长的,然后剩下的长度继续切次长的,直到无法再切。 但这样可能余料较多,导致需要更多的原材料。 例如,切一根1800*3次,余600,这样每根原材料生产3根1800,满足2根的话,只需要1根原材料,余1根1800,但剩下的需求可能无法高效利用余料。 不过可能还有其他切割方式,比如1800+1500*2=1800+3000=4800,余1200,可以再切一根1200。这样一根原材料可以产1*1800,2*1500,1*1200。这样可能更高效。 所以,贪心算法可能不是最优的,因此需要更智能的方法。 可能给出一个动态规划的解决方案,处理一维下料问题,其中需求可以是多个不同长度的数量,计算最少需要的原材料数量。 这里给出一个动态规划的示例,考虑每根原材料的切割方式,并计算满足所有需求所需的最少根数。 不过,这样的动态规划可能需要处理多维状态(每个需求的数量),这可能比较复杂。 例如,状态是各需求数量的元组,然后每次选择一种切割方式,减少相应的数量,并递归计算剩下的所需根数,加上当前根数。但因为状态空间随需求数量指数增长,这种方法只适用于小规模问题。因此,可能需要使用近似算法或启发式算法。 或者,使用整数规划模型,通过库来实现。 例如,使用PuLP库建立模型: 定义变量x_p表示使用切割模式p的次数。每个切割模式p是一个向量,表示该模式下各长度的切割数量。目标是最小化总根数,即sumx_p。 约束条件是,对于每个长度l,sum(x_p *a_{p,l}) >= demand_l,其中a_{p,l}是模式p中长度l的数量。 但生成所有可能的切割模式是不现实的,所以列生成方法在此时被使用,逐步生成有潜力的模式。不过,这样的代码实现可能比较复杂,需要用到优化库的支持。 例如,这里给出一个简化的PuLP代码示例,处理小规模问题: ```python from pulpimport * #输入参数 L= 6000# 原材料长度 demands= {1800: 2,1500:4, 1200:5}# 各长度需求数量# 初始化问题prob = LpProblem("Cutting_Stock_Problem", LpMinimize) #生成所有可能的切割模式(这里简化为枚举有限模式,实际可能需要更智能的方法)patterns = [] #例如,模式1:切3根1800pattern1 = {1800:3, 1500:0,1200:0} patterns.append(pattern1) #模式2:切2根1500和2根1200 → 1500*2 +1200*2 = 3000+2400=5400 ≤6000 pattern2 = {1800:0,1500:2, 1200:2}patterns.append(pattern2) # 模式3:切1根1800,2根1500,1根1200 → 1800+3000+1200=6000 pattern3 = {1800:1,1500:2, 1200:1}patterns.append(pattern3) # 其他可能的模式... #创建变量,每个模式被使用的次数 x =LpVariable.dicts("pattern", range(len(patterns)), lowBound=0, cat='Integer') #目标函数:最小化总根数 prob +=lpSum([x[i] for iin range(len(patterns))]) #约束:满足各长度的需求for l in demands: prob +=lpSum([patterns[i][l]* x[i]for i in range(len(patterns))]) >= demands[l] # 求解prob.solve() # 输出结果 print("Status:", LpStatus[prob.status]) print("最少需要原材料数量:",int(value(prob.objective))) fori in range(len(patterns)):if x[i].value() >0: print(f"模式{i+1}使用了{int(x[i].value())}次,切割方式:{patterns[i]}") ``` 不过,这个示例的问题在于需要手动列举所有可能的切割模式,这在实际情况中是不可行的。因此,用户需要更自动化的生成切割模式的方法,比如列生成算法。但列生成的实现比较复杂,可能超出简单示例的范围。因此,这个示例仅作为演示,实际应用中需要更高级的方法。 解释这段代码:使用PuLP建立整数规划模型,手动定义了几种可能的切割模式,然后求解最小使用次数。当需求被满足时,得到最少需要的原材料数量。但问题在于模式需要预先定义,可能无法覆盖最优解的情况,所以结果可能不是最优的。 因此,这可能是一个简化的示例,用户需要注意其局限性。接下来,用户可能需要更高效的方法,比如动态规划或者列生成。但动态规划在处理多数量需求时状态空间太大,而列生成又较为复杂。因此,在实际工业应用中,可能会使用专门的算法或商业软件来解决此类问题。 相关问题可能涉及不同的解决方法、算法的时间复杂度、如何扩展到更复杂的情况等。</think>边框生产中的最优切割法属于典型的**一维切割下料问题**(1D Cutting Stock Problem),核心目标是在满足订单需求的前提下最小化原材料消耗。以下是基于动态规划的解决方案和代码实现: ### 动态规划解决方案 假设原材料长度为`L`,需求为不同长度的框及对应数量。我们以最小化使用的原材料数量为目标,建立动态规划模型。 ```python def optimal_cutting(L, demands): from collections import defaultdict import sys # 将需求转换为字典:{长度: 数量} demand_dict = defaultdict(int) for length, cnt in demands: demand_dict[length] += cnt # 动态规划表:dp[state] = 最小根数,state是各长度的剩余需求元组 memo = {} def dp(state): if all(x <= 0 for x in state): return 0 if state in memo: return memo[state] min_rods = sys.maxsize # 生成当前所有可能的切割组合 for combo in generate_combinations(L, state): new_state = list(state) for i, (length, cnt) in enumerate(demand_dict.items()): new_state[i] = max(new_state[i] - combo.get(length, 0), 0) new_state_tuple = tuple(new_state) min_rods = min(min_rods, 1 + dp(new_state_tuple)) memo[state] = min_rods return min_rods # 初始状态:各长度的剩余需求 initial_state = tuple(demand_dict[length] for length in sorted(demand_dict.keys())) return dp(initial_state) def generate_combinations(L, state): # 简化的组合生成器(示例仅包含单一长度切割) # 实际需实现所有可能的有效组合 combinations = [] lengths = sorted(demand_dict.keys()) for length in lengths: max_count = min(L // length, state[lengths.index(length)]) if max_count > 0: combo = {length: max_count} combinations.append(combo) return combinations # 示例输入 L = 6000 # 原材料长度 demands = [(1800, 2), (1500, 4), (1200, 5)] # 各长度需求 print("最少需要原材料数量:", optimal_cutting(L, demands)) ``` ### 代码解释 1. **动态规划状态**:以剩余需求量的元组作为状态,记录各长度仍需切割的数量。 2. **递归函数**:对于每个状态,尝试所有可能的切割组合,并递归计算剩余需求的最小根数。 3. **组合生成器**:生成所有可能的有效切割方式(此处为简化版,需扩展为实际组合逻辑)。 ### 工业级优化建议 实际生产中需结合以下方法: - **列生成算法**:动态生成高效切割模式。 - **启发式规则**:如优先切割最长工件减少余料。 - **整数规划库**:使用`PuLP`或`OR-Tools`处理大规模问题
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值