问题一:下料切割布局 N1 的最优切割路径
1. 问题背景与目标
该问题要求针对图 2 所示的下料切割布局 N1,设计最优的切割路径方案。根据题目描述(图 1),钢板切割过程包含实际切割和空程移动两个部分。空程是指切割设备在完成一段切割后,移动到下一段切割起点过程中的非切割水平运动。优化的目标是最小化整个切割过程中的总空程长度,以提高生产效率。布局 N1 中包含一个矩形零件 A1A2A3A4 需要切割,切割起始点固定为 B1。钢板边界线 B3-B4 不进行切割。
2. 模型建立
2.1 坐标系与几何信息提取
为了精确描述零件位置和切割路径,我们首先建立一个二维笛卡尔坐标系。根据图 2 中的尺寸标注,可以设定 B4 点为坐标原点 (0, 0)。各关键点的坐标计算如下:
-
B4 = (0, 0)
-
B1 = (80, 0) (根据底边长度 80)
-
B2 = (80, 50) (根据右侧高度 50)
-
B3 = (0, 50)
-
A1: x 坐标 = B1 的 x 坐标 - 20 = 80 - 20 = 60;y 坐标 = B4 的 y 坐标 + 15 = 0 + 15 = 15。所以 A1 = (60, 15)。
-
A4: y 坐标与 A1 相同 = 15;x 坐标 = A1 的 x 坐标 - 40 = 60 - 40 = 20。所以 A4 = (20, 15)。
-
A3: x 坐标与 A4 相同 = 20;y 坐标 = A4 的 y 坐标 + 20 = 15 + 20 = 35。所以 A3 = (20, 35)。
-
A2: y 坐标与 A3 相同 = 35;x 坐标与 A1 相同 = 60。所以 A2 = (60, 35)。
需要切割的零件是矩形 A1A2A3A4,其边界由四个线段组成:A1A2, A2A3, A3A4, A4A1。 切割的起始点(切割头初始位置)为 S = B1 = (80, 0)。
2.2 空程分析与优化目标
空程发生在从一个切割段的终点移动到下一个切割段的起点的过程中。在本问题中,由于只有一个独立的矩形零件需要切割,且切割起始点固定为 B1,因此唯一的空程发生在从起始点 B1 移动到矩形零件 A1A2A3A4 轮廓上的第一个切割点 (即切割入口点) 的过程。
一旦切割开始,例如从 P 点开始沿 A1A2A3A4 轮廓进行切割,切割过程本身是连续的,内部不产生空程。完成整个矩形轮廓切割后,切割任务结束(题目未要求返回起点 B1 或特定终点)。因此,总空程长度即为从 B1 到所选切割入口点 P 的距离。
我们的目标是选择矩形 A1A2A3A4 轮廓上的一个点 P,使得从起始点 S = B1 到该点 P 的欧几里得距离 d(S, P)
最小。这个最小距离就是该布局下的最短总空程长度。
2.3 数学模型
设矩形 A1A2A3A4 的轮廓线集合为 L
,轮廓线上的任意一点表示为 P = (x, y)
。起始点为 S = (x_s, y_s) = (80, 0)
。我们需要求解以下优化问题:
-
目标函数: 最小化空程距离
d(S, P)
。Minimize d(S, P) = sqrt((x - x_s)^2 + (y - y_s)^2) = sqrt((x - 80)^2 + (y - 0)^2)
-
约束条件: 点
P(x, y)
必须位于矩形 A1A2A3A4 的轮廓L
上。轮廓L
由以下四个线段组成:-
线段 A1A2:
x = 60
,15 <= y <= 35
-
线段 A2A3:
y = 35
,20 <= x <= 60
-
线段 A3A4:
x = 20
,15 <= y <= 35
-
线段 A4A1:
y = 15
,20 <= x <= 60
-
由于最小化 d(S, P)
等价于最小化其平方 d(S, P)^2
,我们可以将目标函数简化为:
-
等价目标函数:
Minimize f(x, y) = (x - 80)^2 + y^2
3. 模型求解
我们可以通过分析目标函数在矩形轮廓的四个线段上的最小值来求解该问题。
-
线段 A1A2 (x=60, 15<=y<=35):
f(60, y) = (60 - 80)^2 + y^2 = (-20)^2 + y^2 = 400 + y^2
该函数在15 <= y <= 35
区间内是关于y
的增函数。因此,最小值在y = 15
处取得,对应点为 A1(60, 15)。 最小值为f(60, 15) = 400 + 15^2 = 400 + 225 = 625
。 对应的距离d = sqrt(625) = 25
。 -
线段 A2A3 (y=35, 20<=x<=60):
f(x, 35) = (x - 80)^2 + 35^2 = (x - 80)^2 + 1225
该函数在x = 80
时取最小值,但在区间20 <= x <= 60
内,函数值随着x
靠近 80 而减小。因此,最小值在x = 60
处取得,对应点为 A2(60, 35)。 最小值为f(60, 35) = (60 - 80)^2 + 1225 = 400 + 1225 = 1625
。 对应的距离d = sqrt(1625) ≈ 40.31
。 -
线段 A3A4 (x=20, 15<=y<=35):
f(20, y) = (20 - 80)^2 + y^2 = (-60)^2 + y^2 = 3600 + y^2
该函数在15 <= y <= 35
区间内是关于y
的增函数。因此,最小值在y = 15
处取得,对应点为 A4(20, 15)。 最小值为f(20, 15) = 3600 + 15^2 = 3600 + 225 = 3825
。 对应的距离d = sqrt(3825) ≈ 61.85
。 -
线段 A4A1 (y=15, 20<=x<=60):
f(x, 15) = (x - 80)^2 + 15^2 = (x - 80)^2 + 225
同样,该函数在区间20 <= x <= 60
内,最小值在x = 60
处取得,对应点为 A1(60, 15)。 最小值为f(60, 15) = (60 - 80)^2 + 225 = 400 + 225 = 625
。 对应的距离d = sqrt(625) = 25
。
比较 四个线段上的最小值 (625, 1625, 3825, 625),全局最小值在点 A1(60, 15) 处取得,最小距离平方为 625,对应的最小距离为 25。
4. 结果与最优路径方案
-
最优切割入口点: 矩形轮廓上距离起始点 B1(80, 0) 最近的点是顶点 A1(60, 15)。
-
最短总空程长度: 从 B1 到 A1 的距离为 25 个单位长度。
-
最优切割路径方案:
-
切割头从起始点 B1(80, 0) 开始。
-
执行空程移动,直线移动到矩形零件的顶点 A1(60, 15)。此段为空程,长度为 25。
-
从 A1 点开始,沿矩形轮廓进行切割。一个可能的切割顺序是 A1 -> A2 -> A3 -> A4 -> A1。总切割长度为 2*(40+20) = 120。
-
切割完成后停留在 A1 点(或根据实际设备操作要求进行后续动作,但这已超出题目明确要求的空程计算范围)。
-
5. MATLAB 辅助求解与可视化
下面是使用 MATLAB 进行计算确认和可视化的代码:
% --- 问题一:N1布局最优切割路径求解 ---
clear; clc; close all; % 清理环境
% --- 1. 定义坐标 ---
B1 = [80, 0]; % 起始点
A1 = [60, 15]; % 矩形顶点
A2 = [60, 35];
A3 = [20, 35];
A4 = [20, 15];
% 矩形顶点按顺序排列,用于绘图
rect_vertices = [A1; A2; A3; A4; A1]; % 回到起点以闭合矩形
% --- 2. 计算起始点到各顶点的距离 ---
dist_B1_A1 = norm(B1 - A1); % norm计算欧几里得范数(距离)
dist_B1_A2 = norm(B1 - A2);
dist_B1_A3 = norm(B1 - A3);
dist_B1_A4 = norm(B1 - A4);
% (虽然几何分析已知A1最近,这里演示计算过程)
% 通常需要找到轮廓上最近点,对于矩形,最近点可能是顶点或边上投影点
% 但在本例中,B1的y=0,x=80,易知其在矩形四个边上的投影:
% 投影到 A1A2 (x=60): 点(60,0), 不在15<=y<=35内。最近端点A1(60,15)
% 投影到 A2A3 (y=35): 点(80,35), 不在20<=x<=60内。最近端点A2(60,35)
% 投影到 A3A4 (x=20): 点(20,0), 不在15<=y<=35内。最近端点A4(20,15)
% 投影到 A4A1 (y=15): 点(80,15), 不在20<=x<=60内。最近端点A1(60,15)
% 比较B1到A1, A2, A3, A4的距离即可找到轮廓上的最近点
distances_to_vertices = [dist_B1_A1, dist_B1_A2, dist_B1_A3, dist_B1_A4];
vertices = {A1, A2, A3, A4}; % 将坐标存入cell数组
% 找到最小距离及其对应的顶点
[min_dist, min_idx] = min(distances_to_vertices);
optimal_entry_point = vertices{min_idx};
% --- 3. 输出结果 ---
fprintf('--- 问题一 (N1 布局) 求解结果 ---\n');
fprintf('坐标系统:以 B4 为原点 (0, 0)\n');
fprintf('切割起始点 B1 坐标: (%.1f, %.1f)\n', B1(1), B1(2));
fprintf('矩形零件顶点坐标:\n');
fprintf(' A1: (%.1f, %.1f)\n', A1(1), A1(2));
fprintf(' A2: (%.1f, %.1f)\n', A2(1), A2(2));
fprintf(' A3: (%.1f, %.1f)\n', A3(1), A3(2));
fprintf(' A4: (%.1f, %.1f)\n', A4(1), A4(2));
fprintf('\n');
fprintf('计算得到的最优切割入口点坐标: (%.1f, %.1f)\n', optimal_entry_point(1), optimal_entry_point(2));
fprintf('最短总空程长度: %.4f\n', min_dist);
fprintf('\n最优切割路径方案描述:\n');
fprintf('1. 从起始点 B1(%.1f, %.1f) 开始。\n', B1(1), B1(2));
fprintf('2. 空程移动至最优入口点 A1(%.1f, %.1f),空程距离 %.4f。\n', optimal_entry_point(1), optimal_entry_point(2), min_dist);
fprintf('3. 沿矩形轮廓 A1->A2->A3->A4->A1 进行切割。\n');
% --- 4. 可视化结果 ---
figure; % 创建新图形窗口
hold on; % 保持图形,后续绘图叠加
% 绘制矩形零件
plot(rect_vertices(:,1), rect_vertices(:,2), 'b-', 'LineWidth', 1.5); % 蓝色实线绘制矩形
% 标记顶点
scatter([A1(1), A2(1), A3(1), A4(1)], [A1(2), A2(2), A3(2), A4(2)], 50, 'b', 'filled'); % 蓝色实心点标记顶点
text(A1(1)+1, A1(2)-1, 'A1', 'Color', 'b'); % 标注顶点名称
text(A2(1)+1, A2(2)+1, 'A2', 'Color', 'b');
text(A3(1)-3, A3(2)+1, 'A3', 'Color', 'b');
text(A4(1)-3, A4(2)-1, 'A4', 'Color', 'b');
% 标记起始点 B1
scatter(B1(1), B1(2), 100, 'r', 'p', 'filled'); % 红色实心五角星标记起始点
text(B1(1), B1(2)-2, 'B1 (起点)', 'Color', 'r', 'HorizontalAlignment', 'center');
% 绘制最优空程路径
plot([B1(1), optimal_entry_point(1)], [B1(2), optimal_entry_point(2)], 'r--', 'LineWidth', 1.5); % 红色虚线绘制空程路径
% 设置图形属性
title('问题一 (N1 布局) 最优切割路径方案');
xlabel('X 坐标');
ylabel('Y 坐标');
axis equal; % 保持 x, y 轴比例一致
grid on; % 显示网格
legend({'待切割零件 (A1A2A3A4)', '零件顶点', '切割起始点 (B1)', '最优空程路径'}, 'Location', 'best');
hold off; % 结束图形保持状态
% 调整坐标轴范围以更好地显示
xlim([-10, 90]);
ylim([-10, 60]);