ID3 C4.5 CART 区别

本文总结了ID3(信息增益)、C4.5(信息增益比)和CART(C4.5的扩展,包含回归)三种决策树算法的区别,涉及连续值处理、剪枝策略、特征循环使用、缺失值处理、适用场景及优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载:https://zhuanlan.zhihu.com/p/128587211 文章阐述了三者的区别与联系。

做个总结:

算法分类规则能否处理连续值是否存在剪枝分类节点是否可以循环使用是否可以处理缺失值分类或者回归样本大小
ID3信息增益分类小样本
C4.5信息增益比分类中样本
CARTgini指数/MSE分类+回归大样本

具体解释:

(1)对于分类规则中,ID3用信息增益的方法,它偏向选择有许多属性的特征值。(特征值A有三种取值,B有7个)会优先考虑B。C4.5 会偏向特征值较小的特征。

(2)连续值处理:C4.5 对连续特征进行扫描排序(开销大)

(3)剪枝:是一个防止过拟合的过程。C4.5 采用悲观剪枝法,从下向上针对每一个非叶子节点,评估用一个最佳叶子结点去代替。利用误分类率来决定。CART:代价复杂度剪枝。

(4)ID3和C4.5中,在此处选择A1特征作为分割点,那么下次在考虑分割点时,是从{A-A1}中去考虑的,不能再考虑此特征作为分隔点。而CART中不仅要选择最优的特征还要选择特征的最优划分点。比如刚开始用 年龄>18和<=18分类,然后在某一层还可以使用>60和 <=60 >18作为分割点。

(5)ID3对缺失值敏感,C4.5采用概率权重的方法处理缺失值,CART用的是surrogate splits(替代划分)的方式来处理缺失值。详情点击“概率权重”

 

### ID3、C4.5 CART 决策树算法区别及应用比较 #### 一、基本概念与特点 ID3 是最早的决策树算法之一,通过计算信息熵信息增益来选择最佳分裂属性[^1]。该方法倾向于选择具有更多取值的特征作为根节点。 为了克服 ID3 的不足之处,C4.5 对其进行了改进。具体来说,C4.5 使用了增益率而非单纯的信息增益来进行节点分割的选择标准[^3]。此外,C4.5 还支持连续型数据处理以及缺失值处理等功能,在实际应用中更加灵活实用。 相比之下,CART (Classification And Regression Trees) 则是一个更为通用化的框架,既可以用于分类也可以应用于回归分析。对于二叉树结构而言,它采用基尼指数作为衡量指标;而在多叉情况下,则会转而利用方差等其他度量方式。值得注意的是,CART 在剪枝策略上也有所不同——采用了成本复杂度修剪法以防止过拟合现象的发生[^2]。 ```python # Python实现简单的ID3算法示例 def id3(data, target_attribute_name="target"): from math import log def entropy(S): total = sum([len(s) for s in S]) ent = 0. for s in S: p = float(len(s)) / total if p != 0.: ent -= p * log(p, 2.) return ent # 计算信息增益并选取最大者... ``` #### 二、应用场景对比 - **ID3**: 主要适用于离散型变量的数据集,并且当样本数量较大时表现较好。然而由于容易受到噪声影响而导致模型不稳定,因此通常不会单独使用此版本。 - **C4.5**: 更适合于存在大量类别不平衡问题的任务场景下工作,因为其能够有效地应对不同类型的输入特性(包括数值型)。另外,针对含有空缺记录的情况也有较好的鲁棒性。 - **CART**: 广泛运用于金融风险评估等领域内的预测建模当中。除了可以完成传统的监督学习任务外,还特别擅长解决那些涉及非线性关系或者交互效应较强的问题。同时,借助随机森林这样的集成技术还可以进一步提升性能水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值