pytorch - K折交叉验证过程说明及实现

代码主要核心思想来自:https://www.cnblogs.com/JadenFK3326/p/12164519.html

K折交叉交叉验证的过程如下:

以200条数据,十折交叉验证为例子,十折也就是将数据分成10组,进行10组训练,每组用于测试的数据为:数据总条数/组数,即每组20条用于valid,180条用于train,每次valid的都是不同的。

(1)将200条数据,分成按照 数据总条数/组数(折数),进行切分。然后取出第i份作为第i次的valid,剩下的作为train

(2)将每组中的train数据利用DataLoader和Dataset,进行封装。

(3)将train数据用于训练,epoch可以自己定义,然后利用valid做验证。得到一次的train_loss和 valid_loss。

(4)重复(2)(3)步骤,得到最终的 averge_train_loss和averge_valid_loss

上述过程如下图所示:

上述的代码如下:

import torch
import torch.nn as nn
from torch.utils.data import DataLoader,Dataset   
import torch.nn.functional as F
from torch.autograd import Variable



#####构造的训练集####
x = torch.rand(
PyTorch实现k交叉验证可以借助sklearn库中的StratifiedKFold或KFold方法。这两个方法可以根据样本的类别数量进行数据划分。以5交叉验证为例,它可以实现每个类别的样本都是4:1的划分。 首先,我们需要将数据集分为输入特征x和对应的标签label。然后,使用StratifiedKFold或KFold方法将数据集划分为k个(k-folds),其中每个都包含一部分样本用于验证(validation),其余样本用于训练(training)。在每个中,我们可以使用不同的数据子集进行模型的训练和验证。 以下是一个示例代码,展示了如何使用StratifiedKFold来实现k交叉验证: ```python import torch from sklearn.model_selection import StratifiedKFold # 假设x是输入特征,label是对应的标签 x = torch.rand(200, 28, 28) label = torch.tensor(*100 + *100, dtype=torch.long) # 定义k交叉验证 k = 10 skf = StratifiedKFold(n_splits=k) # 对数据进行k划分 for fold, (train_index, valid_index) in enumerate(skf.split(x, label)): # 获取当前的训练数据和验证数据 x_train, x_valid = x[train_index], x[valid_index] label_train, label_valid = label[train_index], label[valid_index] # 在这里进行模型的训练和验证 # ... # 打印当前的训练和验证数据的大小 print(f"Fold {fold+1}: Train: {len(x_train)}, Valid: {len(x_valid)}") ``` 在这个示例中,我们使用了StratifiedKFold方法将输入特征x和标签label划分为k个。然后,在每个中,我们可以将训练数据x_train和标签label_train用于模型的训练,将验证数据x_valid和标签label_valid用于模型的验证。通过循环迭代每个,可以实现完整的k交叉验证过程。 需要注意的是,以上只是一个示例代码,具体的模型训练和验证过程需要根据实际情况进行相应的实现。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [pytorch - K交叉验证过程说明实现](https://blog.csdn.net/wangchaoxjtu/article/details/117548213)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [手把手教你用pytorch实现k交叉验证,解决类别不平衡](https://blog.csdn.net/u013685264/article/details/126488633)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Foneone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值